Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the statement that is logically equivalent to [tex]\( p \rightarrow q \)[/tex], we need to understand the contrapositive of the implication.
Given:
- [tex]\( p \)[/tex]: Angles XYZ and RST are vertical angles.
- [tex]\( q \)[/tex]: Angles XYZ and RST are congruent.
An implication [tex]\( p \rightarrow q \)[/tex] states "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]". The contrapositive of this statement is logically equivalent to the original implication, and it is formed by:
- Taking the negation of [tex]\( q \)[/tex],
- Taking the negation of [tex]\( p \)[/tex],
- Reversing the direction of the implication.
Therefore, the contrapositive of [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg q \rightarrow \neg p \)[/tex], which reads "If not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]".
Let's restate this in terms of our specific p and q:
- [tex]\( \neg q \)[/tex]: Angles XYZ and RST are not congruent.
- [tex]\( \neg p \)[/tex]: Angles XYZ and RST are not vertical angles.
So, the contrapositive statement [tex]\( \neg q \rightarrow \neg p \)[/tex] becomes:
"If angles XYZ and RST are not congruent, then they are not vertical angles."
This statement is logically equivalent to the original statement [tex]\( p \rightarrow q \)[/tex].
Analyzing the given options:
1. If angles XYZ and RST are congruent, then they are vertical angles. (Incorrect)
2. If angles XYZ and RST are not vertical angles, then they are not congruent. (Incorrect)
3. If angles XYZ and RST are not congruent, then they are not vertical angles. (Correct)
4. If angles XYZ and RST are vertical angles, then they are not congruent. (Incorrect)
Therefore, the statement that is logically equivalent to [tex]\( p \rightarrow q \)[/tex] is:
"If angles XYZ and RST are not congruent, then they are not vertical angles."
Given:
- [tex]\( p \)[/tex]: Angles XYZ and RST are vertical angles.
- [tex]\( q \)[/tex]: Angles XYZ and RST are congruent.
An implication [tex]\( p \rightarrow q \)[/tex] states "If [tex]\( p \)[/tex], then [tex]\( q \)[/tex]". The contrapositive of this statement is logically equivalent to the original implication, and it is formed by:
- Taking the negation of [tex]\( q \)[/tex],
- Taking the negation of [tex]\( p \)[/tex],
- Reversing the direction of the implication.
Therefore, the contrapositive of [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg q \rightarrow \neg p \)[/tex], which reads "If not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]".
Let's restate this in terms of our specific p and q:
- [tex]\( \neg q \)[/tex]: Angles XYZ and RST are not congruent.
- [tex]\( \neg p \)[/tex]: Angles XYZ and RST are not vertical angles.
So, the contrapositive statement [tex]\( \neg q \rightarrow \neg p \)[/tex] becomes:
"If angles XYZ and RST are not congruent, then they are not vertical angles."
This statement is logically equivalent to the original statement [tex]\( p \rightarrow q \)[/tex].
Analyzing the given options:
1. If angles XYZ and RST are congruent, then they are vertical angles. (Incorrect)
2. If angles XYZ and RST are not vertical angles, then they are not congruent. (Incorrect)
3. If angles XYZ and RST are not congruent, then they are not vertical angles. (Correct)
4. If angles XYZ and RST are vertical angles, then they are not congruent. (Incorrect)
Therefore, the statement that is logically equivalent to [tex]\( p \rightarrow q \)[/tex] is:
"If angles XYZ and RST are not congruent, then they are not vertical angles."
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.