Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Of course, let's go through the solution step by step:
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].
We are given the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} x - 3y = 7 \\ 2x + y = 21 \end{array} \right. \][/tex]
Step 1: Solve one of the equations for one variable
First, we solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = 21 \][/tex]
Isolate [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2x \][/tex]
Step 2: Substitute this expression into the other equation
Next, we substitute [tex]\( y = 21 - 2x \)[/tex] into the first equation:
[tex]\[ x - 3(21 - 2x) = 7 \][/tex]
Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ x - 63 + 6x = 7 \][/tex]
Combine like terms:
[tex]\[ 7x - 63 = 7 \][/tex]
Add 63 to both sides:
[tex]\[ 7x = 70 \][/tex]
Divide by 7:
[tex]\[ x = 10 \][/tex]
Step 3: Substitute [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex]
Substitute [tex]\( x = 10 \)[/tex] back into the expression [tex]\( y = 21 - 2x \)[/tex] to find [tex]\( y \)[/tex]:
[tex]\[ y = 21 - 2(10) \][/tex]
Calculate:
[tex]\[ y = 21 - 20 \][/tex]
[tex]\[ y = 1 \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 10, \quad y = 1 \][/tex]
So, the solution is [tex]\((x, y) = (10, 1)\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.