Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which quadratic function best fits the given data, we examine the sum of squares of residuals (SSR) for each candidate quadratic function. The residuals are the differences between the observed values and the values predicted by the model. The SSR is computed as follows:
[tex]\[ \text{SSR} = \sum (y_{\text{predicted}} - y_{\text{observed}})^2 \][/tex]
For the given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 250 \\ 2 & 289 \\ 3 & 316 \\ 4 & 335 \\ 5 & 320 \\ 6 & 290 \\ \hline \end{array} \][/tex]
We have four candidate quadratic functions:
1. [tex]\( y = 9.16 x^2 - 73.04 x + 183.3 \)[/tex]
2. [tex]\( y = 9.16 x^2 + 73.04 x + 183.3 \)[/tex]
3. [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex]
4. [tex]\( y = -9.16 x^2 - 73.04 x + 183.3 \)[/tex]
For each function, we calculate the SSR:
- For the first function [tex]\( y = 9.16 x^2 - 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 345066.0728 \)[/tex].
- For the second function [tex]\( y = 9.16 x^2 + 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 763690.4504 \)[/tex].
- For the third function [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 78.4087999999998 \)[/tex].
- For the fourth function [tex]\( y = -9.16 x^2 - 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 1941849.7304 \)[/tex].
The function with the smallest SSR is the one that best fits the data. From the values above, the smallest SSR is [tex]\( 78.4087999999998 \)[/tex], which corresponds to the third function [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex].
Therefore, the quadratic function that best fits the given data is:
[tex]\[ y = -9.16 x^2 + 73.04 x + 183.3 \][/tex]
[tex]\[ \text{SSR} = \sum (y_{\text{predicted}} - y_{\text{observed}})^2 \][/tex]
For the given data:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 1 & 250 \\ 2 & 289 \\ 3 & 316 \\ 4 & 335 \\ 5 & 320 \\ 6 & 290 \\ \hline \end{array} \][/tex]
We have four candidate quadratic functions:
1. [tex]\( y = 9.16 x^2 - 73.04 x + 183.3 \)[/tex]
2. [tex]\( y = 9.16 x^2 + 73.04 x + 183.3 \)[/tex]
3. [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex]
4. [tex]\( y = -9.16 x^2 - 73.04 x + 183.3 \)[/tex]
For each function, we calculate the SSR:
- For the first function [tex]\( y = 9.16 x^2 - 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 345066.0728 \)[/tex].
- For the second function [tex]\( y = 9.16 x^2 + 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 763690.4504 \)[/tex].
- For the third function [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 78.4087999999998 \)[/tex].
- For the fourth function [tex]\( y = -9.16 x^2 - 73.04 x + 183.3 \)[/tex], the SSR is [tex]\( 1941849.7304 \)[/tex].
The function with the smallest SSR is the one that best fits the data. From the values above, the smallest SSR is [tex]\( 78.4087999999998 \)[/tex], which corresponds to the third function [tex]\( y = -9.16 x^2 + 73.04 x + 183.3 \)[/tex].
Therefore, the quadratic function that best fits the given data is:
[tex]\[ y = -9.16 x^2 + 73.04 x + 183.3 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.