Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the polynomial that represents the difference between [tex]\(2x^2 + 7x + 6\)[/tex] and [tex]\(3x^2 - x\)[/tex], we can follow these steps:
1. Write the given polynomials:
[tex]\[ 2x^2 + 7x + 6 \][/tex]
[tex]\[ 3x^2 - x \][/tex]
2. Subtract the second polynomial from the first polynomial term-by-term:
- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x - (-x) = 7x + x\)[/tex]
- For the constant term: [tex]\(6 - 0\)[/tex]
3. Perform the subtraction for each term:
- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2 = -x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x + x = 8x\)[/tex]
- For the constant term: [tex]\(6 - 0 = 6\)[/tex]
4. Combine the resulting terms to form the final polynomial:
[tex]\[ -x^2 + 8x + 6 \][/tex]
Thus, the polynomial that represents the difference is [tex]\(-x^2 + 8x + 6\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-x^2 + 8x + 6} \][/tex]
Which corresponds to option:
[tex]\[ \boxed{C} \][/tex]
1. Write the given polynomials:
[tex]\[ 2x^2 + 7x + 6 \][/tex]
[tex]\[ 3x^2 - x \][/tex]
2. Subtract the second polynomial from the first polynomial term-by-term:
- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x - (-x) = 7x + x\)[/tex]
- For the constant term: [tex]\(6 - 0\)[/tex]
3. Perform the subtraction for each term:
- For the [tex]\(x^2\)[/tex] term: [tex]\(2x^2 - 3x^2 = -x^2\)[/tex]
- For the [tex]\(x\)[/tex] term: [tex]\(7x + x = 8x\)[/tex]
- For the constant term: [tex]\(6 - 0 = 6\)[/tex]
4. Combine the resulting terms to form the final polynomial:
[tex]\[ -x^2 + 8x + 6 \][/tex]
Thus, the polynomial that represents the difference is [tex]\(-x^2 + 8x + 6\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-x^2 + 8x + 6} \][/tex]
Which corresponds to option:
[tex]\[ \boxed{C} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.