At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Which polynomial represents the sum below?

[tex]\[
\left(16 x^2-16\right)+\left(-12 x^2-12 x+12\right)
\][/tex]

A. [tex]\(28 x^2-28 x-12\)[/tex]
B. [tex]\(4 x^2-12 x-4\)[/tex]
C. [tex]\(16 x^2-28 x-16\)[/tex]
D. [tex]\(4 x^2-12 x+28\)[/tex]


Sagot :

To determine which polynomial represents the sum of the given polynomials
[tex]\[ \left(16 x^2 - 16 \right) + \left( -12 x^2 - 12 x + 12 \right), \][/tex]
we need to combine like terms from each polynomial.

1. Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 16x^2 + (-12x^2) = 16x^2 - 12x^2 = 4x^2 \][/tex]

2. Combine the [tex]\(x\)[/tex] terms:
The first polynomial does not have an [tex]\(x\)[/tex] term, so we take the [tex]\(x\)[/tex] term from the second polynomial:
[tex]\[ -12x \][/tex]

3. Combine the constant terms:
[tex]\[ -16 + 12 = -4 \][/tex]

Putting it all together, the sum of the polynomials is:
[tex]\[ 4x^2 - 12x - 4 \][/tex]

Thus, the correct polynomial representing the sum is:
[tex]\[ \boxed{4x^2 - 12x - 4} \][/tex]

So the answer is:
[tex]\[ \text{B. } 4 x^2 - 12 x - 4 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.