At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Practice proving that a quadrilateral is a parallelogram.

In quadrilateral WXYZ, WC = 2x + 5 and CY = 3x + 2. What must x equal for quadrilateral WXYZ to be a parallelogram?

x = _______


Sagot :

To prove that a quadrilateral [tex]\(WXYZ\)[/tex] is a parallelogram, we need to show that either both pairs of opposite sides are equal or both pairs of opposite angles are equal, or one pair of opposite sides are both equal and parallel.

In this case, we are given the lengths of sides [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] with the equations:
[tex]\[ WC = 2x + 5 \][/tex]
[tex]\[ CY = 3x + 2 \][/tex]

For [tex]\(WXYZ\)[/tex] to be a parallelogram, opposite sides must be equal. Hence, we set the lengths [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] equal to each other:
[tex]\[ 2x + 5 = 3x + 2 \][/tex]

To solve for [tex]\(x\)[/tex], we first isolate [tex]\(x\)[/tex] on one side of the equation. Start by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ 5 = x + 2 \][/tex]

Next, subtract 2 from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ 3 = x \][/tex]

Therefore, to ensure that quadrilateral [tex]\(WXYZ\)[/tex] is a parallelogram, [tex]\(x\)[/tex] must be:
[tex]\[ x = 3 \][/tex]