Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To prove that a quadrilateral [tex]\(WXYZ\)[/tex] is a parallelogram, we need to show that either both pairs of opposite sides are equal or both pairs of opposite angles are equal, or one pair of opposite sides are both equal and parallel.
In this case, we are given the lengths of sides [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] with the equations:
[tex]\[ WC = 2x + 5 \][/tex]
[tex]\[ CY = 3x + 2 \][/tex]
For [tex]\(WXYZ\)[/tex] to be a parallelogram, opposite sides must be equal. Hence, we set the lengths [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] equal to each other:
[tex]\[ 2x + 5 = 3x + 2 \][/tex]
To solve for [tex]\(x\)[/tex], we first isolate [tex]\(x\)[/tex] on one side of the equation. Start by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ 5 = x + 2 \][/tex]
Next, subtract 2 from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ 3 = x \][/tex]
Therefore, to ensure that quadrilateral [tex]\(WXYZ\)[/tex] is a parallelogram, [tex]\(x\)[/tex] must be:
[tex]\[ x = 3 \][/tex]
In this case, we are given the lengths of sides [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] with the equations:
[tex]\[ WC = 2x + 5 \][/tex]
[tex]\[ CY = 3x + 2 \][/tex]
For [tex]\(WXYZ\)[/tex] to be a parallelogram, opposite sides must be equal. Hence, we set the lengths [tex]\(WC\)[/tex] and [tex]\(CY\)[/tex] equal to each other:
[tex]\[ 2x + 5 = 3x + 2 \][/tex]
To solve for [tex]\(x\)[/tex], we first isolate [tex]\(x\)[/tex] on one side of the equation. Start by subtracting [tex]\(2x\)[/tex] from both sides:
[tex]\[ 5 = x + 2 \][/tex]
Next, subtract 2 from both sides to solve for [tex]\(x\)[/tex]:
[tex]\[ 3 = x \][/tex]
Therefore, to ensure that quadrilateral [tex]\(WXYZ\)[/tex] is a parallelogram, [tex]\(x\)[/tex] must be:
[tex]\[ x = 3 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.