Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the correct statement about the graph of the function [tex]\( f(x) = \log_2 x \)[/tex], let's analyze the graph step-by-step.
1. Vertical Asymptote:
- The logarithmic function [tex]\( \log_2 x \)[/tex] has a vertical asymptote where the argument of the logarithm (in this case, [tex]\( x \)[/tex]) approaches zero from the right.
- Therefore, the vertical asymptote for [tex]\( f(x) = \log_2 x \)[/tex] is at [tex]\( x = 0 \)[/tex].
2. Behavior of the Graph:
- As [tex]\( x \)[/tex] approaches 0 from the right ([tex]\( x \to 0^+ \)[/tex]), the value of [tex]\( \log_2 x \)[/tex] tends towards negative infinity. This confirms that the graph has a vertical asymptote at [tex]\( x = 0 \)[/tex].
- The function [tex]\( f(x) = \log_2 x \)[/tex] is defined only for positive [tex]\( x \)[/tex] values.
3. Sign of the Function on the Interval [tex]\( (0, 1) \)[/tex]:
- We next investigate the value of [tex]\( f(x) \)[/tex] on the interval [tex]\( (0, 1) \)[/tex]. We know that for [tex]\( x \)[/tex] in [tex]\( (0, 1) \)[/tex], [tex]\( 0 < x < 1 \)[/tex].
- For any [tex]\( x \)[/tex] between 0 and 1, [tex]\( \log_2 x \)[/tex] is negative because we are taking the logarithm base 2 of a number less than 1.
We can now address each of the statements given in the question:
A. The graph has an asymptote of [tex]\( y = 0 \)[/tex] and is increasing as [tex]\( x \)[/tex] approaches positive infinity. - This is incorrect. The asymptote is at [tex]\( x = 0 \)[/tex], not [tex]\( y = 0 \)[/tex].
B. The graph has an asymptote of [tex]\( x = 0 \)[/tex] and is negative over the interval [tex]\( (0, 1) \)[/tex]. - This statement is correct.
C. The graph has an asymptote of [tex]\( x = 0 \)[/tex] and is positive over the interval [tex]\( (0, 1) \)[/tex]. - This is incorrect. The function [tex]\( \log_2 x \)[/tex] is negative over the interval [tex]\( (0, 1) \)[/tex].
D. The graph has an asymptote of [tex]\( y = 0 \)[/tex] and is decreasing as [tex]\( x \)[/tex] approaches positive infinity. - This is incorrect. The asymptote is at [tex]\( x = 0 \)[/tex], not [tex]\( y = 0 \)[/tex], and the function is increasing as [tex]\( x \)[/tex] approaches positive infinity.
Based on this analysis, the correct answer is B. The graph has an asymptote of [tex]\( x=0 \)[/tex] and is negative over the interval [tex]\( (0,1) \)[/tex].
1. Vertical Asymptote:
- The logarithmic function [tex]\( \log_2 x \)[/tex] has a vertical asymptote where the argument of the logarithm (in this case, [tex]\( x \)[/tex]) approaches zero from the right.
- Therefore, the vertical asymptote for [tex]\( f(x) = \log_2 x \)[/tex] is at [tex]\( x = 0 \)[/tex].
2. Behavior of the Graph:
- As [tex]\( x \)[/tex] approaches 0 from the right ([tex]\( x \to 0^+ \)[/tex]), the value of [tex]\( \log_2 x \)[/tex] tends towards negative infinity. This confirms that the graph has a vertical asymptote at [tex]\( x = 0 \)[/tex].
- The function [tex]\( f(x) = \log_2 x \)[/tex] is defined only for positive [tex]\( x \)[/tex] values.
3. Sign of the Function on the Interval [tex]\( (0, 1) \)[/tex]:
- We next investigate the value of [tex]\( f(x) \)[/tex] on the interval [tex]\( (0, 1) \)[/tex]. We know that for [tex]\( x \)[/tex] in [tex]\( (0, 1) \)[/tex], [tex]\( 0 < x < 1 \)[/tex].
- For any [tex]\( x \)[/tex] between 0 and 1, [tex]\( \log_2 x \)[/tex] is negative because we are taking the logarithm base 2 of a number less than 1.
We can now address each of the statements given in the question:
A. The graph has an asymptote of [tex]\( y = 0 \)[/tex] and is increasing as [tex]\( x \)[/tex] approaches positive infinity. - This is incorrect. The asymptote is at [tex]\( x = 0 \)[/tex], not [tex]\( y = 0 \)[/tex].
B. The graph has an asymptote of [tex]\( x = 0 \)[/tex] and is negative over the interval [tex]\( (0, 1) \)[/tex]. - This statement is correct.
C. The graph has an asymptote of [tex]\( x = 0 \)[/tex] and is positive over the interval [tex]\( (0, 1) \)[/tex]. - This is incorrect. The function [tex]\( \log_2 x \)[/tex] is negative over the interval [tex]\( (0, 1) \)[/tex].
D. The graph has an asymptote of [tex]\( y = 0 \)[/tex] and is decreasing as [tex]\( x \)[/tex] approaches positive infinity. - This is incorrect. The asymptote is at [tex]\( x = 0 \)[/tex], not [tex]\( y = 0 \)[/tex], and the function is increasing as [tex]\( x \)[/tex] approaches positive infinity.
Based on this analysis, the correct answer is B. The graph has an asymptote of [tex]\( x=0 \)[/tex] and is negative over the interval [tex]\( (0,1) \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.