Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Subtract these polynomials:

[tex]\[
(3x^2 + 6x + 7) - (6x^2 - 5x - 7) =
\][/tex]

A. [tex]\(-3x^2 + x + 0\)[/tex]

B. [tex]\(-3x^2 + 11x + 14\)[/tex]

C. [tex]\(9x^2 + x + 0\)[/tex]

D. [tex]\(9x^2 + 11x + 14\)[/tex]


Sagot :

Certainly! Let's work through the problem step-by-step.

We have two polynomials that we need to subtract:

[tex]\[ \left(3x^2 + 6x + 7\right) - \left(6x^2 - 5x - 7\right) \][/tex]

To subtract these polynomials, we need to distribute the negative sign to each term in the second polynomial, and then combine like terms with the first polynomial. Let's break it down:

1. Distribute the negative sign to each term in the second polynomial:
[tex]\[ 3x^2 + 6x + 7 - 6x^2 + 5x + 7 \][/tex]

2. Now, combine the like terms by subtracting the coefficients of corresponding powers of [tex]\(x\)[/tex]:

- For [tex]\(x^2\)[/tex] terms:
[tex]\[ 3x^2 - 6x^2 = (3 - 6)x^2 = -3x^2 \][/tex]

- For [tex]\(x\)[/tex] terms:
[tex]\[ 6x + 5x = (6 + 5)x = 11x \][/tex]

- For the constant terms:
[tex]\[ 7 + 7 = 14 \][/tex]

Putting it all together, we get:

[tex]\[ -3x^2 + 11x + 14 \][/tex]

Thus, the result of subtracting the given polynomials is [tex]\(-3x^2 + 11x + 14\)[/tex].

Hence, the correct answer is:
[tex]\[ \boxed{-3x^2 + 11x + 14} \][/tex]

This corresponds to option B.

So, the answer is:

B. [tex]\(-3x^2 + 11x + 14\)[/tex]