Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the [tex]\( x \)[/tex]-intercepts of the parabola defined by the equation [tex]\( y = x^2 - 9x + 18 \)[/tex], we need to determine the values of [tex]\( x \)[/tex] when [tex]\( y = 0 \)[/tex].
1. Set the quadratic equation equal to zero:
[tex]\[ x^2 - 9x + 18 = 0 \][/tex]
2. To solve the quadratic equation, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. For our equation [tex]\( x^2 - 9x + 18 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = -9, \quad c = 18 \][/tex]
4. First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = (-9)^2 - 4 \cdot 1 \cdot 18 = 81 - 72 = 9 \][/tex]
5. The quadratic formula now gives us:
[tex]\[ x = \frac{-(-9) \pm \sqrt{9}}{2 \cdot 1} = \frac{9 \pm 3}{2} \][/tex]
6. Solving for the two roots:
[tex]\[ x_1 = \frac{9 + 3}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ x_2 = \frac{9 - 3}{2} = \frac{6}{2} = 3 \][/tex]
7. Therefore, the [tex]\( x \)[/tex]-intercepts of the parabola are at [tex]\( (6, 0) \)[/tex] and [tex]\( (3, 0) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(3,0) \text{ and } (6,0)} \][/tex]
Therefore, the correct option is [tex]\( \text{D} \)[/tex].
1. Set the quadratic equation equal to zero:
[tex]\[ x^2 - 9x + 18 = 0 \][/tex]
2. To solve the quadratic equation, we can use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are the coefficients of the equation [tex]\( ax^2 + bx + c = 0 \)[/tex].
3. For our equation [tex]\( x^2 - 9x + 18 = 0 \)[/tex], the coefficients are:
[tex]\[ a = 1, \quad b = -9, \quad c = 18 \][/tex]
4. First, calculate the discriminant [tex]\( \Delta \)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = (-9)^2 - 4 \cdot 1 \cdot 18 = 81 - 72 = 9 \][/tex]
5. The quadratic formula now gives us:
[tex]\[ x = \frac{-(-9) \pm \sqrt{9}}{2 \cdot 1} = \frac{9 \pm 3}{2} \][/tex]
6. Solving for the two roots:
[tex]\[ x_1 = \frac{9 + 3}{2} = \frac{12}{2} = 6 \][/tex]
[tex]\[ x_2 = \frac{9 - 3}{2} = \frac{6}{2} = 3 \][/tex]
7. Therefore, the [tex]\( x \)[/tex]-intercepts of the parabola are at [tex]\( (6, 0) \)[/tex] and [tex]\( (3, 0) \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{(3,0) \text{ and } (6,0)} \][/tex]
Therefore, the correct option is [tex]\( \text{D} \)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.