Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Alright! Let’s walk through the solution step-by-step to determine which equation can be factored and solved for the smaller integer when the product of two consecutive integers is 72.
1. Understanding the Problem:
- The problem states we have two consecutive integers whose product is 72.
- Let's denote these two consecutive integers by [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex] where [tex]\( x \)[/tex] is the smaller integer.
2. Setting Up the Equation:
- Given the consecutive integers are [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex], their product can be expressed by the equation:
[tex]\[ x(x + 1) = 72 \][/tex]
3. Forming a Quadratic Equation:
- Expanding this equation:
[tex]\[ x(x + 1) = x^2 + x \][/tex]
- Thus, the equation becomes:
[tex]\[ x^2 + x = 72 \][/tex]
- To form a standard quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we move 72 to the left side of the equation:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
4. Comparing with Given Choices:
- The equation we derived is [tex]\( x^2 + x - 72 = 0 \)[/tex].
- Checking the given options:
- [tex]\( x^2 + x - 72 = 0 \)[/tex]
- [tex]\( x^2 + x + 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x - 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x + 72 = 0 \)[/tex]
The correct equation that we have derived and matches one of the given choices is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
5. Solving the Quadratic Equation:
- To find the smaller integer [tex]\( x \)[/tex], solve the quadratic equation [tex]\( x^2 + x - 72 = 0 \)[/tex].
- The solutions to this equation are [tex]\( x = -9 \)[/tex] and [tex]\( x = 8 \)[/tex].
Therefore, the equation that can be factored and solved for the smaller integer is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
1. Understanding the Problem:
- The problem states we have two consecutive integers whose product is 72.
- Let's denote these two consecutive integers by [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex] where [tex]\( x \)[/tex] is the smaller integer.
2. Setting Up the Equation:
- Given the consecutive integers are [tex]\( x \)[/tex] and [tex]\( x+1 \)[/tex], their product can be expressed by the equation:
[tex]\[ x(x + 1) = 72 \][/tex]
3. Forming a Quadratic Equation:
- Expanding this equation:
[tex]\[ x(x + 1) = x^2 + x \][/tex]
- Thus, the equation becomes:
[tex]\[ x^2 + x = 72 \][/tex]
- To form a standard quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex], we move 72 to the left side of the equation:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
4. Comparing with Given Choices:
- The equation we derived is [tex]\( x^2 + x - 72 = 0 \)[/tex].
- Checking the given options:
- [tex]\( x^2 + x - 72 = 0 \)[/tex]
- [tex]\( x^2 + x + 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x - 72 = 0 \)[/tex]
- [tex]\( x^2 + 2x + 72 = 0 \)[/tex]
The correct equation that we have derived and matches one of the given choices is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
5. Solving the Quadratic Equation:
- To find the smaller integer [tex]\( x \)[/tex], solve the quadratic equation [tex]\( x^2 + x - 72 = 0 \)[/tex].
- The solutions to this equation are [tex]\( x = -9 \)[/tex] and [tex]\( x = 8 \)[/tex].
Therefore, the equation that can be factored and solved for the smaller integer is:
[tex]\[ x^2 + x - 72 = 0 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.