Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which function has an inverse that is also a function, we need to analyze each given option to check if they are one-to-one functions. A one-to-one function means that each x value maps to a unique y value and vice versa, which is necessary for the inverse to also be a function.
### Analysis of Each Function:
1. [tex]\( b(x) = x^2 + 3 \)[/tex]
- This is a quadratic function.
- Quadratic functions are not one-to-one because they fail the horizontal line test; that is, a horizontal line will intersect the graph at more than one point.
- Therefore, [tex]\( b(x) = x^2 + 3 \)[/tex] does not have an inverse that is a function.
2. [tex]\( d(x) = -9 \)[/tex]
- This is a constant function.
- Constant functions are also not one-to-one because any horizontal line test or multiple x-values map to the same y-value.
- Therefore, [tex]\( d(x) = -9 \)[/tex] does not have an inverse that is a function.
3. [tex]\( m(x) = -7x \)[/tex]
- This is a linear function of the form [tex]\( y = mx + c \)[/tex] where [tex]\( m \neq 0 \)[/tex].
- Linear functions are one-to-one; they pass the horizontal line test because each x-value maps to a unique y-value.
- Therefore, [tex]\( m(x) = -7x \)[/tex] has an inverse that is a function, which can be found by solving for x: [tex]\( x = \frac{y}{-7} \)[/tex].
4. [tex]\( p(x) = |x| \)[/tex]
- This is an absolute value function.
- Absolute value functions are not one-to-one because they fail the horizontal line test; for example, [tex]\( p(x) = 1 \)[/tex] when [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
- Therefore, [tex]\( p(x) = |x| \)[/tex] does not have an inverse that is a function.
### Conclusion:
After analyzing all the options, the function that has an inverse which is a function is:
- [tex]\( m(x) = -7x \)[/tex]
Therefore, the correct answer is:
3
### Analysis of Each Function:
1. [tex]\( b(x) = x^2 + 3 \)[/tex]
- This is a quadratic function.
- Quadratic functions are not one-to-one because they fail the horizontal line test; that is, a horizontal line will intersect the graph at more than one point.
- Therefore, [tex]\( b(x) = x^2 + 3 \)[/tex] does not have an inverse that is a function.
2. [tex]\( d(x) = -9 \)[/tex]
- This is a constant function.
- Constant functions are also not one-to-one because any horizontal line test or multiple x-values map to the same y-value.
- Therefore, [tex]\( d(x) = -9 \)[/tex] does not have an inverse that is a function.
3. [tex]\( m(x) = -7x \)[/tex]
- This is a linear function of the form [tex]\( y = mx + c \)[/tex] where [tex]\( m \neq 0 \)[/tex].
- Linear functions are one-to-one; they pass the horizontal line test because each x-value maps to a unique y-value.
- Therefore, [tex]\( m(x) = -7x \)[/tex] has an inverse that is a function, which can be found by solving for x: [tex]\( x = \frac{y}{-7} \)[/tex].
4. [tex]\( p(x) = |x| \)[/tex]
- This is an absolute value function.
- Absolute value functions are not one-to-one because they fail the horizontal line test; for example, [tex]\( p(x) = 1 \)[/tex] when [tex]\( x = 1 \)[/tex] and [tex]\( x = -1 \)[/tex].
- Therefore, [tex]\( p(x) = |x| \)[/tex] does not have an inverse that is a function.
### Conclusion:
After analyzing all the options, the function that has an inverse which is a function is:
- [tex]\( m(x) = -7x \)[/tex]
Therefore, the correct answer is:
3
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.