Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Let's tackle question 57 step-by-step:
To find the minimum time required for a vehicle of mass [tex]\( m \)[/tex] being driven by an engine of power [tex]\( P \)[/tex] to accelerate from rest, we analyze the kinematics and the relationship between power, force, and acceleration.
1. Understand Power and Force Relationships:
- Power ([tex]\( P \)[/tex]) is the rate at which work is done.
- Work done ([tex]\( W \)[/tex]) is given by [tex]\( W = F \cdot d \)[/tex], where [tex]\( F \)[/tex] is the force and [tex]\( d \)[/tex] is the distance.
- We know that power is also given by the product of force and velocity: [tex]\( P = F \cdot v \)[/tex].
2. Relate Force and Acceleration:
- Newton's second law states [tex]\( F = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration.
- Substituting [tex]\( F = m \cdot a \)[/tex] in the power equation [tex]\( P = F \cdot v \)[/tex], we get:
[tex]\[ P = m \cdot a \cdot v. \][/tex]
- Rearranging for acceleration, [tex]\( a \)[/tex]:
[tex]\[ a = \frac{P}{m \cdot v}. \][/tex]
3. Set Up the Differential Equation:
- The acceleration [tex]\( a \)[/tex] is the time derivative of velocity ([tex]\( v \)[/tex]):
[tex]\[ a = \frac{dv}{dt}. \][/tex]
- Thus:
[tex]\[ \frac{dv}{dt} = \frac{P}{m \cdot v}. \][/tex]
- Rearrange and separate variables:
[tex]\[ v \, dv = \frac{P}{m} \, dt. \][/tex]
4. Integrate to Find Time:
- Integrate both sides to find the velocity as a function of time:
[tex]\[ \int_{0}^{v} v \, dv = \frac{P}{m} \int_{0}^{t} dt. \][/tex]
- The integrals yield:
[tex]\[ \left[ \frac{v^2}{2} \right]_{0}^{v} = \frac{P}{m} \left[ t \right]_{0}^{t}. \][/tex]
- Simplify the result:
[tex]\[ \frac{v^2}{2} = \frac{P}{m} t. \][/tex]
- Solving for time [tex]\( t \)[/tex]:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Therefore, the minimum time required for a vehicle of mass [tex]\( m \)[/tex] driven by an engine of power [tex]\( P \)[/tex] to reach a velocity [tex]\( v \)[/tex] from rest is:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
To find the minimum time required for a vehicle of mass [tex]\( m \)[/tex] being driven by an engine of power [tex]\( P \)[/tex] to accelerate from rest, we analyze the kinematics and the relationship between power, force, and acceleration.
1. Understand Power and Force Relationships:
- Power ([tex]\( P \)[/tex]) is the rate at which work is done.
- Work done ([tex]\( W \)[/tex]) is given by [tex]\( W = F \cdot d \)[/tex], where [tex]\( F \)[/tex] is the force and [tex]\( d \)[/tex] is the distance.
- We know that power is also given by the product of force and velocity: [tex]\( P = F \cdot v \)[/tex].
2. Relate Force and Acceleration:
- Newton's second law states [tex]\( F = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration.
- Substituting [tex]\( F = m \cdot a \)[/tex] in the power equation [tex]\( P = F \cdot v \)[/tex], we get:
[tex]\[ P = m \cdot a \cdot v. \][/tex]
- Rearranging for acceleration, [tex]\( a \)[/tex]:
[tex]\[ a = \frac{P}{m \cdot v}. \][/tex]
3. Set Up the Differential Equation:
- The acceleration [tex]\( a \)[/tex] is the time derivative of velocity ([tex]\( v \)[/tex]):
[tex]\[ a = \frac{dv}{dt}. \][/tex]
- Thus:
[tex]\[ \frac{dv}{dt} = \frac{P}{m \cdot v}. \][/tex]
- Rearrange and separate variables:
[tex]\[ v \, dv = \frac{P}{m} \, dt. \][/tex]
4. Integrate to Find Time:
- Integrate both sides to find the velocity as a function of time:
[tex]\[ \int_{0}^{v} v \, dv = \frac{P}{m} \int_{0}^{t} dt. \][/tex]
- The integrals yield:
[tex]\[ \left[ \frac{v^2}{2} \right]_{0}^{v} = \frac{P}{m} \left[ t \right]_{0}^{t}. \][/tex]
- Simplify the result:
[tex]\[ \frac{v^2}{2} = \frac{P}{m} t. \][/tex]
- Solving for time [tex]\( t \)[/tex]:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Therefore, the minimum time required for a vehicle of mass [tex]\( m \)[/tex] driven by an engine of power [tex]\( P \)[/tex] to reach a velocity [tex]\( v \)[/tex] from rest is:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.