Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's tackle question 57 step-by-step:
To find the minimum time required for a vehicle of mass [tex]\( m \)[/tex] being driven by an engine of power [tex]\( P \)[/tex] to accelerate from rest, we analyze the kinematics and the relationship between power, force, and acceleration.
1. Understand Power and Force Relationships:
- Power ([tex]\( P \)[/tex]) is the rate at which work is done.
- Work done ([tex]\( W \)[/tex]) is given by [tex]\( W = F \cdot d \)[/tex], where [tex]\( F \)[/tex] is the force and [tex]\( d \)[/tex] is the distance.
- We know that power is also given by the product of force and velocity: [tex]\( P = F \cdot v \)[/tex].
2. Relate Force and Acceleration:
- Newton's second law states [tex]\( F = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration.
- Substituting [tex]\( F = m \cdot a \)[/tex] in the power equation [tex]\( P = F \cdot v \)[/tex], we get:
[tex]\[ P = m \cdot a \cdot v. \][/tex]
- Rearranging for acceleration, [tex]\( a \)[/tex]:
[tex]\[ a = \frac{P}{m \cdot v}. \][/tex]
3. Set Up the Differential Equation:
- The acceleration [tex]\( a \)[/tex] is the time derivative of velocity ([tex]\( v \)[/tex]):
[tex]\[ a = \frac{dv}{dt}. \][/tex]
- Thus:
[tex]\[ \frac{dv}{dt} = \frac{P}{m \cdot v}. \][/tex]
- Rearrange and separate variables:
[tex]\[ v \, dv = \frac{P}{m} \, dt. \][/tex]
4. Integrate to Find Time:
- Integrate both sides to find the velocity as a function of time:
[tex]\[ \int_{0}^{v} v \, dv = \frac{P}{m} \int_{0}^{t} dt. \][/tex]
- The integrals yield:
[tex]\[ \left[ \frac{v^2}{2} \right]_{0}^{v} = \frac{P}{m} \left[ t \right]_{0}^{t}. \][/tex]
- Simplify the result:
[tex]\[ \frac{v^2}{2} = \frac{P}{m} t. \][/tex]
- Solving for time [tex]\( t \)[/tex]:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Therefore, the minimum time required for a vehicle of mass [tex]\( m \)[/tex] driven by an engine of power [tex]\( P \)[/tex] to reach a velocity [tex]\( v \)[/tex] from rest is:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
To find the minimum time required for a vehicle of mass [tex]\( m \)[/tex] being driven by an engine of power [tex]\( P \)[/tex] to accelerate from rest, we analyze the kinematics and the relationship between power, force, and acceleration.
1. Understand Power and Force Relationships:
- Power ([tex]\( P \)[/tex]) is the rate at which work is done.
- Work done ([tex]\( W \)[/tex]) is given by [tex]\( W = F \cdot d \)[/tex], where [tex]\( F \)[/tex] is the force and [tex]\( d \)[/tex] is the distance.
- We know that power is also given by the product of force and velocity: [tex]\( P = F \cdot v \)[/tex].
2. Relate Force and Acceleration:
- Newton's second law states [tex]\( F = m \cdot a \)[/tex], where [tex]\( a \)[/tex] is the acceleration.
- Substituting [tex]\( F = m \cdot a \)[/tex] in the power equation [tex]\( P = F \cdot v \)[/tex], we get:
[tex]\[ P = m \cdot a \cdot v. \][/tex]
- Rearranging for acceleration, [tex]\( a \)[/tex]:
[tex]\[ a = \frac{P}{m \cdot v}. \][/tex]
3. Set Up the Differential Equation:
- The acceleration [tex]\( a \)[/tex] is the time derivative of velocity ([tex]\( v \)[/tex]):
[tex]\[ a = \frac{dv}{dt}. \][/tex]
- Thus:
[tex]\[ \frac{dv}{dt} = \frac{P}{m \cdot v}. \][/tex]
- Rearrange and separate variables:
[tex]\[ v \, dv = \frac{P}{m} \, dt. \][/tex]
4. Integrate to Find Time:
- Integrate both sides to find the velocity as a function of time:
[tex]\[ \int_{0}^{v} v \, dv = \frac{P}{m} \int_{0}^{t} dt. \][/tex]
- The integrals yield:
[tex]\[ \left[ \frac{v^2}{2} \right]_{0}^{v} = \frac{P}{m} \left[ t \right]_{0}^{t}. \][/tex]
- Simplify the result:
[tex]\[ \frac{v^2}{2} = \frac{P}{m} t. \][/tex]
- Solving for time [tex]\( t \)[/tex]:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Therefore, the minimum time required for a vehicle of mass [tex]\( m \)[/tex] driven by an engine of power [tex]\( P \)[/tex] to reach a velocity [tex]\( v \)[/tex] from rest is:
[tex]\[ t = \frac{m v^2}{2P}. \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.