At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let’s analyze the given function [tex]\( g(x) = (x-9)^2 + \)[/tex].
### Step-by-Step Solution:
1. Understanding the Vertex Form:
The vertex form of a quadratic function is given by:
[tex]\[ g(x) = a(x-h)^2 + k \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
2. Identifying Components of the Function:
Observing the given function [tex]\( g(x) = (x-9)^2 \)[/tex], we can directly compare it with the vertex form [tex]\( g(x) = a(x-h)^2 + k \)[/tex].
- The term inside the parenthesis with [tex]\( x \)[/tex] (i.e., [tex]\((x - 9)\)[/tex]) provides the value of [tex]\( h \)[/tex]:
[tex]\[ h = 9 \][/tex]
- The constant term added outside the square term represents [tex]\( k \)[/tex]. Since no constant term is explicitly provided in the equation [tex]\( (x-9)^2 \)[/tex], we can infer that:
[tex]\[ k = 0 \][/tex]
3. Vertex of the Function:
From the values identified, the vertex of the function [tex]\( g(x) = (x-9)^2 \)[/tex] is:
[tex]\[ (h, k) = (9, 0) \][/tex]
### Conclusion
The values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are [tex]\( h = 9 \)[/tex] and [tex]\( k = 0 \)[/tex], respectively. Thus, the equation in vertex form is:
[tex]\[ g(x) = (x-9)^2 + 0 \][/tex]
### Step-by-Step Solution:
1. Understanding the Vertex Form:
The vertex form of a quadratic function is given by:
[tex]\[ g(x) = a(x-h)^2 + k \][/tex]
Here, [tex]\((h, k)\)[/tex] represents the vertex of the parabola.
2. Identifying Components of the Function:
Observing the given function [tex]\( g(x) = (x-9)^2 \)[/tex], we can directly compare it with the vertex form [tex]\( g(x) = a(x-h)^2 + k \)[/tex].
- The term inside the parenthesis with [tex]\( x \)[/tex] (i.e., [tex]\((x - 9)\)[/tex]) provides the value of [tex]\( h \)[/tex]:
[tex]\[ h = 9 \][/tex]
- The constant term added outside the square term represents [tex]\( k \)[/tex]. Since no constant term is explicitly provided in the equation [tex]\( (x-9)^2 \)[/tex], we can infer that:
[tex]\[ k = 0 \][/tex]
3. Vertex of the Function:
From the values identified, the vertex of the function [tex]\( g(x) = (x-9)^2 \)[/tex] is:
[tex]\[ (h, k) = (9, 0) \][/tex]
### Conclusion
The values of [tex]\( h \)[/tex] and [tex]\( k \)[/tex] are [tex]\( h = 9 \)[/tex] and [tex]\( k = 0 \)[/tex], respectively. Thus, the equation in vertex form is:
[tex]\[ g(x) = (x-9)^2 + 0 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.