At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given options demonstrates how the number 70 is calculated using the combination pattern, we can recognize that 70 appears in the combination pattern as [tex]\(\binom{8}{4}\)[/tex].
The combination formula, also known as "n choose k," is given by:
[tex]\[ \binom{n}{k} = \frac{n!}{(n - k)! k!} \][/tex]
Let's consider each option:
Option A: [tex]\(\binom{8}{4} = \frac{8!}{(8-4)! \cdot 4!}\)[/tex]
Here:
- [tex]\(n = 8\)[/tex]
- [tex]\(k = 4\)[/tex]
The formula simplifies to:
[tex]\[ \binom{8}{4} = \frac{8!}{4! \cdot 4!} \][/tex]
Calculating the factorial values, we get:
[tex]\[ 8! = 40320 \][/tex]
[tex]\[ 4! = 24 \][/tex]
Hence,
[tex]\[ \binom{8}{4} = \frac{40320}{24 \times 24} = \frac{40320}{576} = 70 \][/tex]
This confirms that Option A is correct.
Option B: [tex]\(\binom{70}{8} = \frac{70!}{(70-8)!8!}\)[/tex]
Here:
- [tex]\(n = 70\)[/tex]
- [tex]\(k = 8\)[/tex]
However, calculating [tex]\(\binom{70}{8}\)[/tex] does not fit the pattern of the given combination that results in 70.
Option C: [tex]\(\binom{8}{5} = \frac{8!}{(8-5)!5!}\)[/tex]
Here:
- [tex]\(n = 8\)[/tex]
- [tex]\(k = 5\)[/tex]
This would require us to compute:
[tex]\[ \binom{8}{5} = \frac{8!}{3! \cdot 5!} \][/tex]
This does not simplify to 70.
Option D: [tex]\(\binom{70}{4} = \frac{70!}{(70-4)!4!}\)[/tex]
Here:
- [tex]\(n = 70\)[/tex]
- [tex]\(k = 4\)[/tex]
Calculating [tex]\(\binom{70}{4}\)[/tex] would yield an extremely large number, not 70.
Thus, after considering all the options, the correct method to calculate 70 using the combination pattern is shown in Option A:
[tex]\[ \binom{8}{4} = \frac{8!}{(8-4)!4!} = 70 \][/tex]
The combination formula, also known as "n choose k," is given by:
[tex]\[ \binom{n}{k} = \frac{n!}{(n - k)! k!} \][/tex]
Let's consider each option:
Option A: [tex]\(\binom{8}{4} = \frac{8!}{(8-4)! \cdot 4!}\)[/tex]
Here:
- [tex]\(n = 8\)[/tex]
- [tex]\(k = 4\)[/tex]
The formula simplifies to:
[tex]\[ \binom{8}{4} = \frac{8!}{4! \cdot 4!} \][/tex]
Calculating the factorial values, we get:
[tex]\[ 8! = 40320 \][/tex]
[tex]\[ 4! = 24 \][/tex]
Hence,
[tex]\[ \binom{8}{4} = \frac{40320}{24 \times 24} = \frac{40320}{576} = 70 \][/tex]
This confirms that Option A is correct.
Option B: [tex]\(\binom{70}{8} = \frac{70!}{(70-8)!8!}\)[/tex]
Here:
- [tex]\(n = 70\)[/tex]
- [tex]\(k = 8\)[/tex]
However, calculating [tex]\(\binom{70}{8}\)[/tex] does not fit the pattern of the given combination that results in 70.
Option C: [tex]\(\binom{8}{5} = \frac{8!}{(8-5)!5!}\)[/tex]
Here:
- [tex]\(n = 8\)[/tex]
- [tex]\(k = 5\)[/tex]
This would require us to compute:
[tex]\[ \binom{8}{5} = \frac{8!}{3! \cdot 5!} \][/tex]
This does not simplify to 70.
Option D: [tex]\(\binom{70}{4} = \frac{70!}{(70-4)!4!}\)[/tex]
Here:
- [tex]\(n = 70\)[/tex]
- [tex]\(k = 4\)[/tex]
Calculating [tex]\(\binom{70}{4}\)[/tex] would yield an extremely large number, not 70.
Thus, after considering all the options, the correct method to calculate 70 using the combination pattern is shown in Option A:
[tex]\[ \binom{8}{4} = \frac{8!}{(8-4)!4!} = 70 \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.