Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve for the values of [tex]\( a \)[/tex] through [tex]\( e \)[/tex] that make these two relations inverses of each other, let's proceed step by step.
### Understanding Relations and Their Inverses
Given two sets of pairs, a relation and its inverse share a specific property: if a pair [tex]\((x, y)\)[/tex] is in the first relation, then the pair [tex]\((y, x)\)[/tex] should be in the inverse relation.
### Relations Given
1. First Relation:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3.8 & -3.1 \\ b & 3.2 \\ -1.4 & c \\ -0.2 & 4.4 \\ 1.0 & 5.0 \\ \hline \end{array} \][/tex]
2. Second Relation (Inverse):
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3.1 & a \\ 3.2 & -2.6 \\ 1.7 & -1.4 \\ d & -0.2 \\ 5.0 & e \\ \hline \end{array} \][/tex]
### Solving for Each Variable
#### [tex]\( a \)[/tex]
It’s given that the pair [tex]\((-3.8, -3.1)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((-3.1, -3.8)\)[/tex].
So, [tex]\( a = -3.8 \)[/tex].
#### [tex]\( b \)[/tex]
It’s given that the pair [tex]\(( b, 3.2 )\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((3.2, b )\)[/tex].
Since [tex]\((3.2, -2.6)\)[/tex] is a pair in the inverse relation, it corresponds to [tex]\( b = -2.6 \)[/tex].
#### [tex]\( c \)[/tex]
It's given that [tex]\((-1.4, c)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((c, -1.4)\)[/tex].
Since [tex]\((1.7, -1.4)\)[/tex] is a pair in the inverse relation, it corresponds to [tex]\( c = 1.7 \)[/tex].
#### [tex]\( d \)[/tex]
It’s given that the pair [tex]\((-0.2, 4.4)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((4.4, -0.2)\)[/tex].
Since there is no pair [tex]\( (d, 4.4) \)[/tex] included in the given relations, [tex]\( d\)[/tex] includes no value, hence [tex]\( d = None \)[/tex].
#### [tex]\( e \)[/tex]
It’s given that the pair [tex]\((1.0, 5.0)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((5.0, 1.0)\)[/tex].
Since [tex]\((5.0, 1.0)\)[/tex] is a pair in the inverse relation, thus we find:
Hence, [tex]\( e = 1.0 \)[/tex].
### Summary of Values:
[tex]\[ a = -3.8 \\ b = -2.6 \\ c = 1.7 \\ d = None \\ e = 1.0 \][/tex]
Thus, the values of [tex]\( a \)[/tex] through [tex]\( e \)[/tex] that make the relations inverses of each other are:
[tex]\[ a = -3.8, \quad b = -2.6, \quad c = 1.7, \quad d = None, \quad e = 1.0 \][/tex]
### Understanding Relations and Their Inverses
Given two sets of pairs, a relation and its inverse share a specific property: if a pair [tex]\((x, y)\)[/tex] is in the first relation, then the pair [tex]\((y, x)\)[/tex] should be in the inverse relation.
### Relations Given
1. First Relation:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3.8 & -3.1 \\ b & 3.2 \\ -1.4 & c \\ -0.2 & 4.4 \\ 1.0 & 5.0 \\ \hline \end{array} \][/tex]
2. Second Relation (Inverse):
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3.1 & a \\ 3.2 & -2.6 \\ 1.7 & -1.4 \\ d & -0.2 \\ 5.0 & e \\ \hline \end{array} \][/tex]
### Solving for Each Variable
#### [tex]\( a \)[/tex]
It’s given that the pair [tex]\((-3.8, -3.1)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((-3.1, -3.8)\)[/tex].
So, [tex]\( a = -3.8 \)[/tex].
#### [tex]\( b \)[/tex]
It’s given that the pair [tex]\(( b, 3.2 )\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((3.2, b )\)[/tex].
Since [tex]\((3.2, -2.6)\)[/tex] is a pair in the inverse relation, it corresponds to [tex]\( b = -2.6 \)[/tex].
#### [tex]\( c \)[/tex]
It's given that [tex]\((-1.4, c)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((c, -1.4)\)[/tex].
Since [tex]\((1.7, -1.4)\)[/tex] is a pair in the inverse relation, it corresponds to [tex]\( c = 1.7 \)[/tex].
#### [tex]\( d \)[/tex]
It’s given that the pair [tex]\((-0.2, 4.4)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((4.4, -0.2)\)[/tex].
Since there is no pair [tex]\( (d, 4.4) \)[/tex] included in the given relations, [tex]\( d\)[/tex] includes no value, hence [tex]\( d = None \)[/tex].
#### [tex]\( e \)[/tex]
It’s given that the pair [tex]\((1.0, 5.0)\)[/tex] is in the first relation.
Thus, the inverse relation should include [tex]\((5.0, 1.0)\)[/tex].
Since [tex]\((5.0, 1.0)\)[/tex] is a pair in the inverse relation, thus we find:
Hence, [tex]\( e = 1.0 \)[/tex].
### Summary of Values:
[tex]\[ a = -3.8 \\ b = -2.6 \\ c = 1.7 \\ d = None \\ e = 1.0 \][/tex]
Thus, the values of [tex]\( a \)[/tex] through [tex]\( e \)[/tex] that make the relations inverses of each other are:
[tex]\[ a = -3.8, \quad b = -2.6, \quad c = 1.7, \quad d = None, \quad e = 1.0 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.