Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the absolute value inequality [tex]\(|2n - 3| > 11\)[/tex], let's follow these steps:
1. Understand the absolute value inequality: The expression [tex]\(|A| > B\)[/tex] (where [tex]\(A\)[/tex] is an expression and [tex]\(B\)[/tex] is a positive number) can be interpreted as two separate inequalities: [tex]\(A > B\)[/tex] or [tex]\(A < -B\)[/tex].
2. Apply this to our specific inequality:
[tex]\[ |2n - 3| > 11 \][/tex]
This translates into two separate inequalities:
[tex]\[ 2n - 3 > 11 \quad \text{or} \quad 2n - 3 < -11 \][/tex]
3. Solve the first inequality [tex]\(2n - 3 > 11\)[/tex]:
[tex]\[ 2n - 3 > 11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n > 14 \][/tex]
Divide both sides by 2:
[tex]\[ n > 7 \][/tex]
4. Solve the second inequality [tex]\(2n - 3 < -11\)[/tex]:
[tex]\[ 2n - 3 < -11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n < -8 \][/tex]
Divide both sides by 2:
[tex]\[ n < -4 \][/tex]
5. Combine the solutions: The solutions to the two inequalities are:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]
Therefore, the solution to the absolute value inequality [tex]\(|2n - 3| > 11\)[/tex] is:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]
This means that [tex]\(n\)[/tex] must be either greater than 7 or less than -4 to satisfy the inequality.
1. Understand the absolute value inequality: The expression [tex]\(|A| > B\)[/tex] (where [tex]\(A\)[/tex] is an expression and [tex]\(B\)[/tex] is a positive number) can be interpreted as two separate inequalities: [tex]\(A > B\)[/tex] or [tex]\(A < -B\)[/tex].
2. Apply this to our specific inequality:
[tex]\[ |2n - 3| > 11 \][/tex]
This translates into two separate inequalities:
[tex]\[ 2n - 3 > 11 \quad \text{or} \quad 2n - 3 < -11 \][/tex]
3. Solve the first inequality [tex]\(2n - 3 > 11\)[/tex]:
[tex]\[ 2n - 3 > 11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n > 14 \][/tex]
Divide both sides by 2:
[tex]\[ n > 7 \][/tex]
4. Solve the second inequality [tex]\(2n - 3 < -11\)[/tex]:
[tex]\[ 2n - 3 < -11 \][/tex]
Add 3 to both sides to isolate terms involving [tex]\(n\)[/tex]:
[tex]\[ 2n < -8 \][/tex]
Divide both sides by 2:
[tex]\[ n < -4 \][/tex]
5. Combine the solutions: The solutions to the two inequalities are:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]
Therefore, the solution to the absolute value inequality [tex]\(|2n - 3| > 11\)[/tex] is:
[tex]\[ n > 7 \quad \text{or} \quad n < -4 \][/tex]
This means that [tex]\(n\)[/tex] must be either greater than 7 or less than -4 to satisfy the inequality.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.