Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Select all expressions that could be equivalent to [tex]\(x^2 + bx - 36\)[/tex] where [tex]\(b\)[/tex] is negative.

A. [tex]\((x + 3)(x - 12)\)[/tex]
B. [tex]\((x - 2)(x + 18)\)[/tex]
C. [tex]\((x - 13)(x - 3)\)[/tex]
D. [tex]\((x + 4)(x + 9)\)[/tex]
E. [tex]\((x - 9)(x + 4)\)[/tex]


Sagot :

To determine which of the given expressions could be equivalent to [tex]\( x^2 + bx - 36 \)[/tex] with [tex]\( b \)[/tex] being negative, we need to expand each expression and compare it to the given polynomial form.

### Option A: [tex]\((x+3)(x-12)\)[/tex]

Expand:
[tex]\[ (x + 3)(x - 12) = x^2 - 12x + 3x - 36 = x^2 - 9x - 36 \][/tex]

Here, the polynomial is [tex]\( x^2 - 9x - 36 \)[/tex]. The coefficient of [tex]\( x \)[/tex] is [tex]\(-9\)[/tex], which is negative.

### Option B: [tex]\((x-2)(x+18)\)[/tex]

Expand:
[tex]\[ (x - 2)(x + 18) = x^2 + 18x - 2x - 36 = x^2 + 16x - 36 \][/tex]

Here, the polynomial is [tex]\( x^2 + 16x - 36 \)[/tex]. The coefficient of [tex]\( x \)[/tex] is [tex]\( 16 \)[/tex], which is positive and does not satisfy the condition.

### Option C: [tex]\((x-13)(x-3)\)[/tex]

Expand:
[tex]\[ (x - 13)(x - 3) = x^2 - 3x - 13x + 39 = x^2 - 16x + 39 \][/tex]

Here, the polynomial is [tex]\( x^2 - 16x + 39 \)[/tex]. The constant term is not [tex]\(-36\)[/tex]; this option does not match the requirement.

### Option D: [tex]\((x+4)(x+9)\)[/tex]

Expand:
[tex]\[ (x + 4)(x + 9) = x^2 + 9x + 4x + 36 = x^2 + 13x + 36 \][/tex]

Here, the polynomial is [tex]\( x^2 + 13x + 36 \)[/tex]. The constant term is incorrect as it is positive rather than negative [tex]\(-36\)[/tex].

### Option E: [tex]\((x-9)(x+4)\)[/tex]

Expand:
[tex]\[ (x - 9)(x + 4) = x^2 + 4x - 9x - 36 = x^2 - 5x - 36 \][/tex]

Here, the polynomial is [tex]\( x^2 - 5x - 36 \)[/tex]. The coefficient of [tex]\( x \)[/tex] is [tex]\(-5\)[/tex], which is negative.

Only the expressions in Option A and Option E have a negative coefficient for the [tex]\( x \)[/tex]-term and a constant term of [tex]\(-36\)[/tex].

Given all the expanded forms, the correct answer is:
[tex]\[ A. (x + 3)(x - 12) \][/tex]
[tex]\[ E. (x - 9)(x + 4) \][/tex]