Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the domain restrictions for the given rational equation:
[tex]\[ \frac{2}{3 x^2} + \frac{x}{2} = \frac{x+5}{x} \][/tex]
we need to identify the values of [tex]\( x \)[/tex] that make any denominator in the equation equal to zero. Denominators that are zero would make the entire equation undefined at those values of [tex]\( x \)[/tex].
Let's analyze the denominators in the equation:
1. The first term [tex]\(\frac{2}{3x^2}\)[/tex]:
- The denominator is [tex]\(3x^2\)[/tex].
- This will be zero when [tex]\(x = 0\)[/tex].
2. The second term [tex]\(\frac{x}{2}\)[/tex]:
- The denominator is [tex]\(2\)[/tex], which is never zero for any value of [tex]\( x \)[/tex]. Hence, no restriction from this term.
3. The third term [tex]\(\frac{x+5}{x}\)[/tex]:
- The denominator is [tex]\(x\)[/tex].
- This will be zero when [tex]\(x = 0\)[/tex].
Combining these observations, the only value of [tex]\( x \)[/tex] that would make any of the denominators zero is:
[tex]\[ x = 0 \][/tex]
Therefore, [tex]\( x = 0 \)[/tex] is a restriction on the domain. We should now look at our given answer choices and select all that apply:
A. There are no restrictions on the domain. - This is incorrect because we found that [tex]\( x = 0 \)[/tex] is a restriction.
B. [tex]\( x = -5 \)[/tex] - This is incorrect because [tex]\( x = -5 \)[/tex] does not make any denominator zero.
C. [tex]\( x = 2 \)[/tex] - This is incorrect because [tex]\( x = 2 \)[/tex] does not make any denominator zero.
D. [tex]\( x = 0 \)[/tex] - This is correct because [tex]\( x = 0 \)[/tex] does make one of the denominators zero.
Thus, the correct answer is:
D. [tex]\( x = 0 \)[/tex]
[tex]\[ \frac{2}{3 x^2} + \frac{x}{2} = \frac{x+5}{x} \][/tex]
we need to identify the values of [tex]\( x \)[/tex] that make any denominator in the equation equal to zero. Denominators that are zero would make the entire equation undefined at those values of [tex]\( x \)[/tex].
Let's analyze the denominators in the equation:
1. The first term [tex]\(\frac{2}{3x^2}\)[/tex]:
- The denominator is [tex]\(3x^2\)[/tex].
- This will be zero when [tex]\(x = 0\)[/tex].
2. The second term [tex]\(\frac{x}{2}\)[/tex]:
- The denominator is [tex]\(2\)[/tex], which is never zero for any value of [tex]\( x \)[/tex]. Hence, no restriction from this term.
3. The third term [tex]\(\frac{x+5}{x}\)[/tex]:
- The denominator is [tex]\(x\)[/tex].
- This will be zero when [tex]\(x = 0\)[/tex].
Combining these observations, the only value of [tex]\( x \)[/tex] that would make any of the denominators zero is:
[tex]\[ x = 0 \][/tex]
Therefore, [tex]\( x = 0 \)[/tex] is a restriction on the domain. We should now look at our given answer choices and select all that apply:
A. There are no restrictions on the domain. - This is incorrect because we found that [tex]\( x = 0 \)[/tex] is a restriction.
B. [tex]\( x = -5 \)[/tex] - This is incorrect because [tex]\( x = -5 \)[/tex] does not make any denominator zero.
C. [tex]\( x = 2 \)[/tex] - This is incorrect because [tex]\( x = 2 \)[/tex] does not make any denominator zero.
D. [tex]\( x = 0 \)[/tex] - This is correct because [tex]\( x = 0 \)[/tex] does make one of the denominators zero.
Thus, the correct answer is:
D. [tex]\( x = 0 \)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.