Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation:
[tex]\[ \frac{2x}{x-1} - \frac{2x-5}{x^2 - 3x + 2} = \frac{-3}{x-2}, \][/tex]
let's follow these steps:
1. Factorize the Denominators:
Note that the quadratic expression [tex]\( x^2 - 3x + 2 \)[/tex] can be factorized:
[tex]\[ x^2 - 3x + 2 = (x-1)(x-2). \][/tex]
2. Rewrite the Equation with Common Denominators:
Rewrite the equation with the quadratic denominator [tex]\( (x-1)(x-2) \)[/tex]:
[tex]\[ \frac{2x}{x-1} - \frac{2x-5}{(x-1)(x-2)} = \frac{-3}{x-2} \][/tex]
To combine the fractions on the left-hand side, get a common denominator [tex]\((x-1)(x-2)\)[/tex]:
[tex]\[ \frac{2x(x-2)}{(x-1)(x-2)} - \frac{2x-5}{(x-1)(x-2)}. \][/tex]
Expanding and combining:
[tex]\[ \frac{2x^2 - 4x - (2x - 5)}{(x-1)(x-2)}, \][/tex]
simplifying further:
[tex]\[ \frac{2x^2 - 4x - 2x + 5}{(x-1)(x-2)} = \frac{2x^2 - 6x + 5}{(x-1)(x-2)}. \][/tex]
3. Equate the Fractions and Solve the Numerator Equation:
We now have:
[tex]\[ \frac{2x^2 - 6x + 5}{(x-1)(x-2)} = \frac{-3}{x-2}. \][/tex]
Cross-multiplying to eliminate denominators:
[tex]\[ (2x^2 - 6x + 5)(x-2) = -3(x-1), \][/tex]
simplifying:
[tex]\[ 2x^3 - 4x^2 - 6x^2 + 12x + 5x - 10 = -3x + 3, \][/tex]
[tex]\[ 2x^3 - 10x^2 + 17x - 10 = 3. \][/tex]
Combine like terms on one side:
[tex]\[ 2x^3 - 10x^2 + 17x - 13 = 0. \][/tex]
4. Factoring and Finding Roots:
Now we need to find the roots of the polynomial equation [tex]\( 2x^3 - 10x^2 + 17x - 13 = 0 \)[/tex].
Solving this cubic equation, we find the complex roots:
[tex]\[ x = 0.75 - 0.661437827766148i, \quad x = 0.75 + 0.661437827766148i. \][/tex]
Checking our solutions, we exclude [tex]\( x=1 \)[/tex] and [tex]\( x=2 \)[/tex] as they make the denominators zero, thus verifying our original restrictions.
Therefore, the valid solutions are [tex]\( x = 0.75 - 0.661437827766148i \)[/tex] and [tex]\( x = 0.75 + 0.661437827766148i \)[/tex], which are complex numbers.
Thus, none of the options A, B, C, or D given (which suggest real solutions) are correct based on the problem statement. The equation has two complex solutions.
[tex]\[ \frac{2x}{x-1} - \frac{2x-5}{x^2 - 3x + 2} = \frac{-3}{x-2}, \][/tex]
let's follow these steps:
1. Factorize the Denominators:
Note that the quadratic expression [tex]\( x^2 - 3x + 2 \)[/tex] can be factorized:
[tex]\[ x^2 - 3x + 2 = (x-1)(x-2). \][/tex]
2. Rewrite the Equation with Common Denominators:
Rewrite the equation with the quadratic denominator [tex]\( (x-1)(x-2) \)[/tex]:
[tex]\[ \frac{2x}{x-1} - \frac{2x-5}{(x-1)(x-2)} = \frac{-3}{x-2} \][/tex]
To combine the fractions on the left-hand side, get a common denominator [tex]\((x-1)(x-2)\)[/tex]:
[tex]\[ \frac{2x(x-2)}{(x-1)(x-2)} - \frac{2x-5}{(x-1)(x-2)}. \][/tex]
Expanding and combining:
[tex]\[ \frac{2x^2 - 4x - (2x - 5)}{(x-1)(x-2)}, \][/tex]
simplifying further:
[tex]\[ \frac{2x^2 - 4x - 2x + 5}{(x-1)(x-2)} = \frac{2x^2 - 6x + 5}{(x-1)(x-2)}. \][/tex]
3. Equate the Fractions and Solve the Numerator Equation:
We now have:
[tex]\[ \frac{2x^2 - 6x + 5}{(x-1)(x-2)} = \frac{-3}{x-2}. \][/tex]
Cross-multiplying to eliminate denominators:
[tex]\[ (2x^2 - 6x + 5)(x-2) = -3(x-1), \][/tex]
simplifying:
[tex]\[ 2x^3 - 4x^2 - 6x^2 + 12x + 5x - 10 = -3x + 3, \][/tex]
[tex]\[ 2x^3 - 10x^2 + 17x - 10 = 3. \][/tex]
Combine like terms on one side:
[tex]\[ 2x^3 - 10x^2 + 17x - 13 = 0. \][/tex]
4. Factoring and Finding Roots:
Now we need to find the roots of the polynomial equation [tex]\( 2x^3 - 10x^2 + 17x - 13 = 0 \)[/tex].
Solving this cubic equation, we find the complex roots:
[tex]\[ x = 0.75 - 0.661437827766148i, \quad x = 0.75 + 0.661437827766148i. \][/tex]
Checking our solutions, we exclude [tex]\( x=1 \)[/tex] and [tex]\( x=2 \)[/tex] as they make the denominators zero, thus verifying our original restrictions.
Therefore, the valid solutions are [tex]\( x = 0.75 - 0.661437827766148i \)[/tex] and [tex]\( x = 0.75 + 0.661437827766148i \)[/tex], which are complex numbers.
Thus, none of the options A, B, C, or D given (which suggest real solutions) are correct based on the problem statement. The equation has two complex solutions.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.