Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve for the length of one leg of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle where the hypotenuse is given as 4 cm, we can use properties specific to this type of right triangle.
1. Understand the Triangle: In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length since the angles opposite these legs are both [tex]\(45^\circ\)[/tex].
2. Relationship Between the Legs and Hypotenuse: The hypotenuse ([tex]\(c\)[/tex]) of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is equal to the leg length ([tex]\(a\)[/tex]) multiplied by [tex]\(\sqrt{2}\)[/tex]. This can be expressed as:
[tex]\[ c = a\sqrt{2} \][/tex]
3. Plug in the Given Hypotenuse: Here, the hypotenuse ([tex]\(c\)[/tex]) is 4 cm. Thus, we set up the equation:
[tex]\[ 4 = a\sqrt{2} \][/tex]
4. Solve for the Leg Length [tex]\(a\)[/tex]: To find the length of one of the legs, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{4}{\sqrt{2}} \][/tex]
5. Rationalize the Denominator (optional but often done in math): To rationalize the denominator, multiply by [tex]\(\frac{\sqrt{2}}{\sqrt{2}}\)[/tex]:
[tex]\[ a = \frac{4 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
Thus, the length of one leg of the triangle is:
[tex]\[ 2\sqrt{2} \text{ cm} \][/tex]
Therefore, the correct answer is:
[tex]\[ 2 \sqrt{2} \text{ cm} \][/tex]
1. Understand the Triangle: In a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle, the two legs are of equal length since the angles opposite these legs are both [tex]\(45^\circ\)[/tex].
2. Relationship Between the Legs and Hypotenuse: The hypotenuse ([tex]\(c\)[/tex]) of a [tex]\(45^\circ-45^\circ-90^\circ\)[/tex] triangle is equal to the leg length ([tex]\(a\)[/tex]) multiplied by [tex]\(\sqrt{2}\)[/tex]. This can be expressed as:
[tex]\[ c = a\sqrt{2} \][/tex]
3. Plug in the Given Hypotenuse: Here, the hypotenuse ([tex]\(c\)[/tex]) is 4 cm. Thus, we set up the equation:
[tex]\[ 4 = a\sqrt{2} \][/tex]
4. Solve for the Leg Length [tex]\(a\)[/tex]: To find the length of one of the legs, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{4}{\sqrt{2}} \][/tex]
5. Rationalize the Denominator (optional but often done in math): To rationalize the denominator, multiply by [tex]\(\frac{\sqrt{2}}{\sqrt{2}}\)[/tex]:
[tex]\[ a = \frac{4 \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2} \][/tex]
Thus, the length of one leg of the triangle is:
[tex]\[ 2\sqrt{2} \text{ cm} \][/tex]
Therefore, the correct answer is:
[tex]\[ 2 \sqrt{2} \text{ cm} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.