Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Select the correct answer.

Which is the correct simplified form of the expression [tex]\(\left(\frac{b^0}{a^3}\right)^{\frac{1}{3}}\)[/tex]?

A. [tex]\(a^2 b^3\)[/tex]

B. [tex]\(\frac{a^4}{b^3}\)[/tex]

C. [tex]\(a b^{-2}\)[/tex]

D. [tex]\(\frac{b^2}{a}\)[/tex]


Sagot :

Let's simplify the expression [tex]\(\left(\frac{b^0}{a^3}\right)^{\frac{1}{3}}\)[/tex] step-by-step.

1. Understanding [tex]\(b^0\)[/tex]:

Any non-zero number raised to the power of 0 is equal to 1. Hence,
[tex]\[ b^0 = 1 \][/tex]

2. Rewrite the expression:

Substitute [tex]\(b^0\)[/tex] with 1 in the original expression:
[tex]\[ \left(\frac{1}{a^3}\right)^{\frac{1}{3}} \][/tex]

3. Apply the exponent rule:

The rule [tex]\((x^m)^n = x^{mn}\)[/tex] can be applied here to further simplify:
[tex]\[ \left(\frac{1}{a^3}\right)^{\frac{1}{3}} = \left(\frac{1}{a^3}\right)^{1/3} = \left(1\right)^{1/3} \cdot \left(\frac{1}{a^3}\right)^{1/3} \][/tex]

Now, analyze each part:

- [tex]\(\left(1\right)^{1/3} = 1\)[/tex]
- [tex]\(\left(\frac{1}{a^3}\right)^{1/3}\)[/tex]

4. Simplify [tex]\( \left(\frac{1}{a^3}\right)^{\frac{1}{3}} \)[/tex]:

Applying the property [tex]\( \left(\frac{1}{x}\right)^n = x^{-n}\)[/tex], we have:
[tex]\[ \left(\frac{1}{a^3}\right)^{1/3} = a^{-3 \cdot 1/3} = a^{-1} \][/tex]

5. Final Expression:

Putting it all together:
[tex]\[ \left(\frac{b^0}{a^3}\right)^{\frac{1}{3}} = a^{-1} \][/tex]

Therefore,
[tex]\[ a^{-1} = \frac{1}{a} \][/tex]

The correct simplified form of the expression is [tex]\(\frac{1}{a}\)[/tex].

So, the correct answer is:

None of the given answers appear to be correct. This problem may contain a typo, or there may be a mistake in the given options. However, based on the provided options, the correct simplified form corresponding to our calculation would have been:

[tex]\[ \frac{1}{a} \][/tex]