Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's break down the solution step-by-step for each part of the problem.
### 1. Bill's Acceleration
1. Initial Velocity of Bill: [tex]\( u = 7 \, \text{m/s} \)[/tex]
2. Final Velocity of Bill: [tex]\( v = 19 \, \text{m/s} \)[/tex]
3. Time taken by Bill: [tex]\( t = 5 \, \text{seconds} \)[/tex]
The formula for acceleration ([tex]\( a \)[/tex]) is:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{19 - 7}{5} \][/tex]
[tex]\[ a = \frac{12}{5} \][/tex]
[tex]\[ a = 2.4 \, \text{m/s}^2 \][/tex]
So, Bill's acceleration is [tex]\( 2.4 \, \text{m/s}^2 \)[/tex].
### 2. Ben's Acceleration
1. Initial Velocity of Ben: [tex]\( u = 15 \, \text{m/s} \)[/tex]
2. Final Velocity of Ben: [tex]\( v = 21 \, \text{m/s} \)[/tex]
3. Time taken by Ben: [tex]\( t = 7 \, \text{seconds} \)[/tex]
Using the formula for acceleration ([tex]\( a \)[/tex]):
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{21 - 15}{7} \][/tex]
[tex]\[ a = \frac{6}{7} \][/tex]
[tex]\[ a \approx 0.8571 \, \text{m/s}^2 \][/tex]
So, Ben's acceleration is approximately [tex]\( 0.8571 \, \text{m/s}^2 \)[/tex].
### 3. Faster Velocity
To determine who is traveling at a faster velocity, we compare the final velocities of Bill and Ben.
- Bill's final velocity: [tex]\( 19 \, \text{m/s} \)[/tex]
- Ben's final velocity: [tex]\( 21 \, \text{m/s} \)[/tex]
Ben's final velocity is higher than Bill's.
Therefore, Ben is traveling at a faster velocity.
### Summary
1. Bill's acceleration is [tex]\( 2.4 \, \text{m/s}^2 \)[/tex].
2. Ben's acceleration is approximately [tex]\( 0.8571 \, \text{m/s}^2 \)[/tex].
3. Ben is traveling at a faster velocity (21 m/s).
### 1. Bill's Acceleration
1. Initial Velocity of Bill: [tex]\( u = 7 \, \text{m/s} \)[/tex]
2. Final Velocity of Bill: [tex]\( v = 19 \, \text{m/s} \)[/tex]
3. Time taken by Bill: [tex]\( t = 5 \, \text{seconds} \)[/tex]
The formula for acceleration ([tex]\( a \)[/tex]) is:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{19 - 7}{5} \][/tex]
[tex]\[ a = \frac{12}{5} \][/tex]
[tex]\[ a = 2.4 \, \text{m/s}^2 \][/tex]
So, Bill's acceleration is [tex]\( 2.4 \, \text{m/s}^2 \)[/tex].
### 2. Ben's Acceleration
1. Initial Velocity of Ben: [tex]\( u = 15 \, \text{m/s} \)[/tex]
2. Final Velocity of Ben: [tex]\( v = 21 \, \text{m/s} \)[/tex]
3. Time taken by Ben: [tex]\( t = 7 \, \text{seconds} \)[/tex]
Using the formula for acceleration ([tex]\( a \)[/tex]):
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substituting the values:
[tex]\[ a = \frac{21 - 15}{7} \][/tex]
[tex]\[ a = \frac{6}{7} \][/tex]
[tex]\[ a \approx 0.8571 \, \text{m/s}^2 \][/tex]
So, Ben's acceleration is approximately [tex]\( 0.8571 \, \text{m/s}^2 \)[/tex].
### 3. Faster Velocity
To determine who is traveling at a faster velocity, we compare the final velocities of Bill and Ben.
- Bill's final velocity: [tex]\( 19 \, \text{m/s} \)[/tex]
- Ben's final velocity: [tex]\( 21 \, \text{m/s} \)[/tex]
Ben's final velocity is higher than Bill's.
Therefore, Ben is traveling at a faster velocity.
### Summary
1. Bill's acceleration is [tex]\( 2.4 \, \text{m/s}^2 \)[/tex].
2. Ben's acceleration is approximately [tex]\( 0.8571 \, \text{m/s}^2 \)[/tex].
3. Ben is traveling at a faster velocity (21 m/s).
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.