Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
The triangle in question is a 45°-45°-90° triangle. This specific type of triangle has special properties that relate the lengths of the legs to the hypotenuse.
### Properties of a 45°-45°-90° Triangle
- The two legs are congruent (equal in length).
- The length of the hypotenuse is equal to the length of one leg multiplied by [tex]\(\sqrt{2}\)[/tex].
Given:
- Hypotenuse [tex]\( = 22\sqrt{2} \)[/tex] units
Let [tex]\( x \)[/tex] be the length of each leg of the triangle.
### Relationship between Hypotenuse and Legs of a 45°-45°-90° Triangle
The relationship can be expressed as:
[tex]\[ \text{Hypotenuse} = x \cdot \sqrt{2} \][/tex]
### Substitute the Given Value:
[tex]\[ 22\sqrt{2} = x \cdot \sqrt{2} \][/tex]
### Solve for [tex]\( x \)[/tex]:
Divide both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ x = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
### Simplify:
[tex]\[ x = 22 \][/tex]
### Conclusion
So, the length of one leg of the triangle is [tex]\( \boxed{22} \)[/tex] units.
### Properties of a 45°-45°-90° Triangle
- The two legs are congruent (equal in length).
- The length of the hypotenuse is equal to the length of one leg multiplied by [tex]\(\sqrt{2}\)[/tex].
Given:
- Hypotenuse [tex]\( = 22\sqrt{2} \)[/tex] units
Let [tex]\( x \)[/tex] be the length of each leg of the triangle.
### Relationship between Hypotenuse and Legs of a 45°-45°-90° Triangle
The relationship can be expressed as:
[tex]\[ \text{Hypotenuse} = x \cdot \sqrt{2} \][/tex]
### Substitute the Given Value:
[tex]\[ 22\sqrt{2} = x \cdot \sqrt{2} \][/tex]
### Solve for [tex]\( x \)[/tex]:
Divide both sides by [tex]\(\sqrt{2}\)[/tex]:
[tex]\[ x = \frac{22\sqrt{2}}{\sqrt{2}} \][/tex]
### Simplify:
[tex]\[ x = 22 \][/tex]
### Conclusion
So, the length of one leg of the triangle is [tex]\( \boxed{22} \)[/tex] units.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.