Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Six identical square pyramids can fill the same volume as a cube with the same base. If the height of the cube is [tex]\(h\)[/tex] units, what is true about the height of each pyramid?

A. The height of each pyramid is [tex]\(\frac{1}{2} h\)[/tex] units.
B. The height of each pyramid is [tex]\(\frac{1}{3} h\)[/tex] units.
C. The height of each pyramid is [tex]\(\frac{1}{6} h\)[/tex] units.
D. The height of each pyramid is [tex]\(h\)[/tex] units.

Sagot :

Let's walk through the problem step-by-step to understand the relationship between the height of the cube and the height of the pyramids that fill it.

1. Volume of the Cube:
- Given the height [tex]\( h \)[/tex] of the cube, we know that the side length of the cube is also [tex]\( h \)[/tex] because all sides of a cube are equal.
- The volume [tex]\( V_{\text{cube}} \)[/tex] of the cube is calculated as:
[tex]\[ V_{\text{cube}} = h^3 \][/tex]

2. Volume of a Square Pyramid:
- The base area [tex]\( A_{\text{base}} \)[/tex] of the square pyramid is the same as one face of the cube, so:
[tex]\[ A_{\text{base}} = h^2 \][/tex]
- Let the height of the pyramid be [tex]\( h_{\text{pyramid}} \)[/tex].
- The volume [tex]\( V_{\text{pyramid}} \)[/tex] of a square pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times \text{Base Area} \times \text{Height} = \frac{1}{3} \times h^2 \times h_{\text{pyramid}} \][/tex]

3. Relationship Between the Cubic and Pyramidal Volumes:
- We are given that six identical square pyramids perfectly fill the volume of the cube. Therefore:
[tex]\[ 6 \times V_{\text{pyramid}} = V_{\text{cube}} \][/tex]
- Substitute the volumes into this equation:
[tex]\[ 6 \times \left( \frac{1}{3} \times h^2 \times h_{\text{pyramid}} \right) = h^3 \][/tex]
- Simplify the equation:
[tex]\[ 2 \times h^2 \times h_{\text{pyramid}} = h^3 \][/tex]

4. Solve for the Height of Each Pyramid:
- To find [tex]\( h_{\text{pyramid}} \)[/tex], divide both sides of the equation by [tex]\( 2h^2 \)[/tex]:
[tex]\[ h_{\text{pyramid}} = \frac{h^3}{2h^2} = \frac{h}{2} \][/tex]

Therefore, the height of each pyramid is:
[tex]\[ h_{\text{pyramid}} = \frac{1}{2} h \][/tex]

The correct answer is:
- The height of each pyramid is [tex]\(\frac{1}{2} h\)[/tex] units.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.