Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which ordered pairs could be points on a line parallel to the one containing the points [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex], we need to follow these steps:
1. Calculate the slope of the original line:
The slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((3,4)\)[/tex] and [tex]\((-2,2)\)[/tex]:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = 0.4 \][/tex]
So, the slope of the original line is [tex]\(0.4\)[/tex].
2. Check each pair of points to see if they have the same slope:
- For the points [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]:
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -0.4 \][/tex]
This slope is not [tex]\(0.4\)[/tex], so this pair does not represent a parallel line.
- For the points [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]:
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-2}{-6 + 1} = \frac{-2}{-5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
- For the points [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} = 2.5 \][/tex]
This slope is not [tex]\(0.4\)[/tex], so this pair does not represent a parallel line.
- For the points [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
- For the points [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
In conclusion, the ordered pairs that could be points on a line parallel to the one containing [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
- [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
- [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
- [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
1. Calculate the slope of the original line:
The slope [tex]\( m \)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((3,4)\)[/tex] and [tex]\((-2,2)\)[/tex]:
[tex]\[ m = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = 0.4 \][/tex]
So, the slope of the original line is [tex]\(0.4\)[/tex].
2. Check each pair of points to see if they have the same slope:
- For the points [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]:
[tex]\[ m = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -0.4 \][/tex]
This slope is not [tex]\(0.4\)[/tex], so this pair does not represent a parallel line.
- For the points [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]:
[tex]\[ m = \frac{-1 - 1}{-6 - (-1)} = \frac{-2}{-6 + 1} = \frac{-2}{-5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
- For the points [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 0}{2 - 0} = \frac{5}{2} = 2.5 \][/tex]
This slope is not [tex]\(0.4\)[/tex], so this pair does not represent a parallel line.
- For the points [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 0}{6 - 1} = \frac{2}{5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
- For the points [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 0}{8 - 3} = \frac{2}{5} = 0.4 \][/tex]
This slope is [tex]\(0.4\)[/tex], so this pair represents a parallel line.
In conclusion, the ordered pairs that could be points on a line parallel to the one containing [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
- [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
- [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
- [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.