Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the equation [tex]\(\ln(x) = -3\)[/tex], follow these steps:
1. Understand that the natural logarithm [tex]\(\ln(x)\)[/tex] is the logarithm to the base [tex]\(e\)[/tex] (where [tex]\(e \approx 2.718\)[/tex]).
2. To isolate [tex]\(x\)[/tex], exponentiate both sides of the equation using the base [tex]\(e\)[/tex], since [tex]\(e\)[/tex] and [tex]\(\ln\)[/tex] are inverse functions. This step transforms the equation into an exponential form:
[tex]\[ e^{\ln(x)} = e^{-3} \][/tex]
3. Since [tex]\(e\)[/tex] and [tex]\(\ln\)[/tex] are inverse functions, [tex]\(e^{\ln(x)} = x\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ x = e^{-3} \][/tex]
4. Calculate [tex]\(e^{-3}\)[/tex]. The value of [tex]\(e^{-3}\)[/tex] is approximately [tex]\(0.049787068367863944\)[/tex].
5. Round the result to two decimal places:
[tex]\[ 0.049787068367863944 \approx 0.05 \][/tex]
So, the solution to the equation [tex]\(\ln(x) = -3\)[/tex], rounded to two decimal places, is [tex]\(0.05\)[/tex].
Therefore, the correct answer is:
D. [tex]\(x = 0.05\)[/tex]
1. Understand that the natural logarithm [tex]\(\ln(x)\)[/tex] is the logarithm to the base [tex]\(e\)[/tex] (where [tex]\(e \approx 2.718\)[/tex]).
2. To isolate [tex]\(x\)[/tex], exponentiate both sides of the equation using the base [tex]\(e\)[/tex], since [tex]\(e\)[/tex] and [tex]\(\ln\)[/tex] are inverse functions. This step transforms the equation into an exponential form:
[tex]\[ e^{\ln(x)} = e^{-3} \][/tex]
3. Since [tex]\(e\)[/tex] and [tex]\(\ln\)[/tex] are inverse functions, [tex]\(e^{\ln(x)} = x\)[/tex]. Therefore, the equation simplifies to:
[tex]\[ x = e^{-3} \][/tex]
4. Calculate [tex]\(e^{-3}\)[/tex]. The value of [tex]\(e^{-3}\)[/tex] is approximately [tex]\(0.049787068367863944\)[/tex].
5. Round the result to two decimal places:
[tex]\[ 0.049787068367863944 \approx 0.05 \][/tex]
So, the solution to the equation [tex]\(\ln(x) = -3\)[/tex], rounded to two decimal places, is [tex]\(0.05\)[/tex].
Therefore, the correct answer is:
D. [tex]\(x = 0.05\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.