Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the partial pressure of argon in a 25.0-liter jar at a temperature of 273 K containing 0.0104 moles of argon, we'll use the Ideal Gas Law, expressed as [tex]\( PV = nRT \)[/tex].
Here are the steps we need to follow:
1. Identify the given values:
- Volume ([tex]\(V\)[/tex]): 25.0 liters
- Moles of argon ([tex]\(n\)[/tex]): 0.0104 moles
- Temperature ([tex]\(T\)[/tex]): 273 Kelvin
- Ideal gas constant ([tex]\(R\)[/tex]): 8.314 [tex]\(\frac{L \cdot kPa}{mol \cdot K}\)[/tex]
2. Rearrange the Ideal Gas Law to solve for the partial pressure ([tex]\(P\)[/tex]):
The formula for the Ideal Gas Law is [tex]\( PV = nRT \)[/tex]. To find the partial pressure, [tex]\(P\)[/tex], we rearrange this equation:
[tex]\[ P = \frac{nRT}{V} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ P = \frac{(0.0104 \, \text{mol}) \times (8.314 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (273 \, \text{K})}{25.0 \, \text{L}} \][/tex]
4. Calculate the partial pressure:
[tex]\[ P = \frac{(0.0104) \times (8.314) \times (273)}{25.0} \][/tex]
After calculating, we find that:
[tex]\[ P \approx 0.944 \, \text{kPa} \][/tex]
Therefore, the partial pressure of argon in the jar is 0.944 kilopascals.
Here are the steps we need to follow:
1. Identify the given values:
- Volume ([tex]\(V\)[/tex]): 25.0 liters
- Moles of argon ([tex]\(n\)[/tex]): 0.0104 moles
- Temperature ([tex]\(T\)[/tex]): 273 Kelvin
- Ideal gas constant ([tex]\(R\)[/tex]): 8.314 [tex]\(\frac{L \cdot kPa}{mol \cdot K}\)[/tex]
2. Rearrange the Ideal Gas Law to solve for the partial pressure ([tex]\(P\)[/tex]):
The formula for the Ideal Gas Law is [tex]\( PV = nRT \)[/tex]. To find the partial pressure, [tex]\(P\)[/tex], we rearrange this equation:
[tex]\[ P = \frac{nRT}{V} \][/tex]
3. Substitute the given values into the equation:
[tex]\[ P = \frac{(0.0104 \, \text{mol}) \times (8.314 \, \frac{\text{L} \cdot \text{kPa}}{\text{mol} \cdot \text{K}}) \times (273 \, \text{K})}{25.0 \, \text{L}} \][/tex]
4. Calculate the partial pressure:
[tex]\[ P = \frac{(0.0104) \times (8.314) \times (273)}{25.0} \][/tex]
After calculating, we find that:
[tex]\[ P \approx 0.944 \, \text{kPa} \][/tex]
Therefore, the partial pressure of argon in the jar is 0.944 kilopascals.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.