Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which ordered pairs could be points on a line parallel to the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex], we first need to find the slope of the line defined by these two points.
1. Calculate the slope of the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
2. A line that is parallel to this line will have the same slope, [tex]\(\frac{2}{5}\)[/tex].
3. Now we need to check each of the given pairs and calculate their slopes to see which ones have the same slope [tex]\(\frac{2}{5}\)[/tex].
Let's check each pair:
### Pair: [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]
[tex]\[ \text{slope} = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -\frac{2}{5} \][/tex]
The slope is [tex]\(-\frac{2}{5}\)[/tex], which is not equal to [tex]\(\frac{2}{5}\)[/tex].
### Pair: [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
[tex]\[ \text{slope} = \frac{-1 - 1}{-6 - (-1)} = \frac{-1 -1}{-6 + 1} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
### Pair: [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
[tex]\[ \text{slope} = \frac{5 - 0}{2 - 0} = \frac{5}{2} \][/tex]
The slope is [tex]\(\frac{5}{2}\)[/tex], which is not equal to [tex]\(\frac{2}{5}\)[/tex].
### Pair: [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
[tex]\[ \text{slope} = \frac{2 - 0}{6 - 1} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
### Pair: [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
[tex]\[ \text{slope} = \frac{2 - 0}{8 - 3} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
From these calculations, we determined that the following pairs of points have the same slope [tex]\(\frac{2}{5}\)[/tex] and are therefore on lines parallel to the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
- [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
- [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
- [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
So, the ordered pairs that could be points on a line parallel to the line that contains [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
[tex]\[ \begin{array}{l} (-1, 1) \text{ and } (-6, -1) \\ (1, 0) \text{ and } (6, 2) \\ (3, 0) \text{ and } (8, 2) \end{array} \][/tex]
1. Calculate the slope of the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 4}{-2 - 3} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
2. A line that is parallel to this line will have the same slope, [tex]\(\frac{2}{5}\)[/tex].
3. Now we need to check each of the given pairs and calculate their slopes to see which ones have the same slope [tex]\(\frac{2}{5}\)[/tex].
Let's check each pair:
### Pair: [tex]\((-2, -5)\)[/tex] and [tex]\((-7, -3)\)[/tex]
[tex]\[ \text{slope} = \frac{-3 - (-5)}{-7 - (-2)} = \frac{-3 + 5}{-7 + 2} = \frac{2}{-5} = -\frac{2}{5} \][/tex]
The slope is [tex]\(-\frac{2}{5}\)[/tex], which is not equal to [tex]\(\frac{2}{5}\)[/tex].
### Pair: [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
[tex]\[ \text{slope} = \frac{-1 - 1}{-6 - (-1)} = \frac{-1 -1}{-6 + 1} = \frac{-2}{-5} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
### Pair: [tex]\((0, 0)\)[/tex] and [tex]\((2, 5)\)[/tex]
[tex]\[ \text{slope} = \frac{5 - 0}{2 - 0} = \frac{5}{2} \][/tex]
The slope is [tex]\(\frac{5}{2}\)[/tex], which is not equal to [tex]\(\frac{2}{5}\)[/tex].
### Pair: [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
[tex]\[ \text{slope} = \frac{2 - 0}{6 - 1} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
### Pair: [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
[tex]\[ \text{slope} = \frac{2 - 0}{8 - 3} = \frac{2}{5} \][/tex]
The slope is [tex]\(\frac{2}{5}\)[/tex], which matches the required slope.
From these calculations, we determined that the following pairs of points have the same slope [tex]\(\frac{2}{5}\)[/tex] and are therefore on lines parallel to the line passing through [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex]:
- [tex]\((-1, 1)\)[/tex] and [tex]\((-6, -1)\)[/tex]
- [tex]\((1, 0)\)[/tex] and [tex]\((6, 2)\)[/tex]
- [tex]\((3, 0)\)[/tex] and [tex]\((8, 2)\)[/tex]
So, the ordered pairs that could be points on a line parallel to the line that contains [tex]\((3, 4)\)[/tex] and [tex]\((-2, 2)\)[/tex] are:
[tex]\[ \begin{array}{l} (-1, 1) \text{ and } (-6, -1) \\ (1, 0) \text{ and } (6, 2) \\ (3, 0) \text{ and } (8, 2) \end{array} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.