Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the distance between Pluto and Charon, we can use the gravitational force formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of Pluto, [tex]\( 1.3 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of Charon, [tex]\( 1.6 \times 10^{21} \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We need to rearrange this formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G m_1 m_2}{F}} \][/tex]
First, substitute the known values into the rearranged formula:
[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \times 1.3 \times 10^{22} \, \text{kg} \times 1.6 \times 10^{21} \, \text{kg}}{3.61 \times 10^{18} \, \text{N}}} \][/tex]
Simplify the expression inside the square root:
[tex]\[ r = \sqrt{\frac{6.67430 \times 1.3 \times 1.6 \times 10^{-11 + 22 + 21}}{3.61 \times 10^{18}}} \][/tex]
Combine the constants:
[tex]\[ r = \sqrt{\frac{13.877392 \times 10^{32}}{3.61 \times 10^{18}}} \][/tex]
Now, divide the exponents:
[tex]\[ r = \sqrt{3.84494155 \times 10^{14}} \][/tex]
Finally, take the square root:
[tex]\[ r \approx 19610150.574132934 \, \text{m} \][/tex]
Thus, the distance between Pluto and Charon is approximately [tex]\( 1.96 \times 10^7 \, \text{m} \)[/tex].
Looking at the provided multiple-choice answers, the closest option is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
So the correct answer is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant, [tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of Pluto, [tex]\( 1.3 \times 10^{22} \, \text{kg} \)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of Charon, [tex]\( 1.6 \times 10^{21} \, \text{kg} \)[/tex],
- [tex]\( r \)[/tex] is the distance between the centers of the two masses.
We need to rearrange this formula to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{\frac{G m_1 m_2}{F}} \][/tex]
First, substitute the known values into the rearranged formula:
[tex]\[ r = \sqrt{\frac{6.67430 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-1} \times 1.3 \times 10^{22} \, \text{kg} \times 1.6 \times 10^{21} \, \text{kg}}{3.61 \times 10^{18} \, \text{N}}} \][/tex]
Simplify the expression inside the square root:
[tex]\[ r = \sqrt{\frac{6.67430 \times 1.3 \times 1.6 \times 10^{-11 + 22 + 21}}{3.61 \times 10^{18}}} \][/tex]
Combine the constants:
[tex]\[ r = \sqrt{\frac{13.877392 \times 10^{32}}{3.61 \times 10^{18}}} \][/tex]
Now, divide the exponents:
[tex]\[ r = \sqrt{3.84494155 \times 10^{14}} \][/tex]
Finally, take the square root:
[tex]\[ r \approx 19610150.574132934 \, \text{m} \][/tex]
Thus, the distance between Pluto and Charon is approximately [tex]\( 1.96 \times 10^7 \, \text{m} \)[/tex].
Looking at the provided multiple-choice answers, the closest option is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
So the correct answer is:
[tex]\[ 2.0 \times 10^7 \, \text{m} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.