Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the distance from the probe to the center of Venus, we will use the formula for gravitational force.
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.