Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the distance from the probe to the center of Venus, we will use the formula for gravitational force.
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.