At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the distance from the probe to the center of Venus, we will use the formula for gravitational force.
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
Given:
- Gravitational force (F): [tex]\(2.58 \times 10^3 \, \text{N}\)[/tex]
- Mass of Venus ([tex]\(m_1\)[/tex]): [tex]\(4.87 \times 10^{24} \, \text{kg}\)[/tex]
- Mass of the probe ([tex]\(m_2\)[/tex]): [tex]\(655 \, \text{kg}\)[/tex]
- Gravitational constant (G): [tex]\(6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2\)[/tex]
The gravitational force formula is:
[tex]\[ F = G \frac{m_1 \cdot m_2}{r^2} \][/tex]
We need to solve for [tex]\( r \)[/tex], the distance between the probe and the center of Venus:
[tex]\[ r^2 = G \frac{m_1 \cdot m_2}{F} \][/tex]
Substituting the given values:
[tex]\[ r^2 = (6.67 \times 10^{-11} \, \text{N} \, \text{m}^2/\text{kg}^2) \frac{(4.87 \times 10^{24} \, \text{kg}) \cdot (655 \, \text{kg})}{2.58 \times 10^3 \, \text{N}} \][/tex]
[tex]\[ r^2 = 82466277131782.95 \, \text{m}^2 \][/tex]
Taking the square root of both sides to solve for [tex]\( r \)[/tex]:
[tex]\[ r = \sqrt{82466277131782.95 \, \text{m}^2} \approx 9081094.489750834 \, \text{m} \][/tex]
To express [tex]\( r \)[/tex] in terms of [tex]\( 10^6 \)[/tex] meters:
[tex]\[ r = \frac{9081094.489750834 \, \text{m}}{10^6} \approx 9.081 \times 10^6 \, \text{m} \][/tex]
Therefore, to three significant digits, the distance from the probe to the center of Venus is [tex]\( 9.081 \times 10^6 \, \text{m} \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.