Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure! To find the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex], follow these steps:
1. Identify the slope of the given line:
- The given line is in the form [tex]\(3x + 2y = 8\)[/tex]. To find the slope, rewrite it in the slope-intercept form [tex]\(y = mx + c\)[/tex].
- Rearrange [tex]\(3x + 2y = 8\)[/tex] into the form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Use the point-slope form to find the equation of the new line:
- A line parallel to the given line will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also [tex]\(-\frac{3}{2}\)[/tex].
- The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope [tex]\(m = -\frac{3}{2}\)[/tex] and the point [tex]\((-2, 5)\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x - (-2)) \][/tex]
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
3. Simplify to the slope-intercept form:
- Distribute the slope [tex]\(-\frac{3}{2}\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
- Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is [tex]\(y = -\frac{3}{2}x + 2\)[/tex].
Now, choose the appropriate values in the blanks:
[tex]\[ y = \boxed{-1.5}x + \boxed{2} \][/tex]
1. Identify the slope of the given line:
- The given line is in the form [tex]\(3x + 2y = 8\)[/tex]. To find the slope, rewrite it in the slope-intercept form [tex]\(y = mx + c\)[/tex].
- Rearrange [tex]\(3x + 2y = 8\)[/tex] into the form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Use the point-slope form to find the equation of the new line:
- A line parallel to the given line will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also [tex]\(-\frac{3}{2}\)[/tex].
- The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope [tex]\(m = -\frac{3}{2}\)[/tex] and the point [tex]\((-2, 5)\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x - (-2)) \][/tex]
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
3. Simplify to the slope-intercept form:
- Distribute the slope [tex]\(-\frac{3}{2}\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
- Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is [tex]\(y = -\frac{3}{2}x + 2\)[/tex].
Now, choose the appropriate values in the blanks:
[tex]\[ y = \boxed{-1.5}x + \boxed{2} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.