Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! To find the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex], follow these steps:
1. Identify the slope of the given line:
- The given line is in the form [tex]\(3x + 2y = 8\)[/tex]. To find the slope, rewrite it in the slope-intercept form [tex]\(y = mx + c\)[/tex].
- Rearrange [tex]\(3x + 2y = 8\)[/tex] into the form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Use the point-slope form to find the equation of the new line:
- A line parallel to the given line will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also [tex]\(-\frac{3}{2}\)[/tex].
- The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope [tex]\(m = -\frac{3}{2}\)[/tex] and the point [tex]\((-2, 5)\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x - (-2)) \][/tex]
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
3. Simplify to the slope-intercept form:
- Distribute the slope [tex]\(-\frac{3}{2}\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
- Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is [tex]\(y = -\frac{3}{2}x + 2\)[/tex].
Now, choose the appropriate values in the blanks:
[tex]\[ y = \boxed{-1.5}x + \boxed{2} \][/tex]
1. Identify the slope of the given line:
- The given line is in the form [tex]\(3x + 2y = 8\)[/tex]. To find the slope, rewrite it in the slope-intercept form [tex]\(y = mx + c\)[/tex].
- Rearrange [tex]\(3x + 2y = 8\)[/tex] into the form [tex]\(y = mx + c\)[/tex]:
[tex]\[ 2y = -3x + 8 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 4 \][/tex]
- The slope [tex]\(m\)[/tex] of the given line is [tex]\(-\frac{3}{2}\)[/tex].
2. Use the point-slope form to find the equation of the new line:
- A line parallel to the given line will have the same slope. Therefore, the slope [tex]\(m\)[/tex] of our new line is also [tex]\(-\frac{3}{2}\)[/tex].
- The point-slope form of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
- Substitute the slope [tex]\(m = -\frac{3}{2}\)[/tex] and the point [tex]\((-2, 5)\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}(x - (-2)) \][/tex]
[tex]\[ y - 5 = -\frac{3}{2}(x + 2) \][/tex]
3. Simplify to the slope-intercept form:
- Distribute the slope [tex]\(-\frac{3}{2}\)[/tex]:
[tex]\[ y - 5 = -\frac{3}{2}x - 3 \][/tex]
- Solve for [tex]\(y\)[/tex]:
[tex]\[ y = -\frac{3}{2}x - 3 + 5 \][/tex]
[tex]\[ y = -\frac{3}{2}x + 2 \][/tex]
Therefore, the equation of the line parallel to [tex]\(3x + 2y = 8\)[/tex] and passing through the point [tex]\((-2, 5)\)[/tex] is [tex]\(y = -\frac{3}{2}x + 2\)[/tex].
Now, choose the appropriate values in the blanks:
[tex]\[ y = \boxed{-1.5}x + \boxed{2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.