Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve this problem, we need to calculate the gravitational force between the Sun and Jupiter using Newton's law of universal gravitation. The formula for gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot (\text{m/kg})^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the Sun, [tex]\( 1.99 \times 10^{30} \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.90 \times 10^{27} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the Sun and Jupiter, which needs to be converted from kilometers to meters.
First, we convert the distance from kilometers to meters.
[tex]\[ r = 7.79 \times 10^8 \, \text{km} \times 10^3 \, \left(\frac{\text{m}}{\text{km}}\right) = 7.79 \times 10^{11} \, \text{m} \][/tex]
Now, we can substitute these values into the gravitational force formula:
[tex]\[ F = \frac{6.67430 \times 10^{-11} \, \text{N(m/kg)}^2 \cdot 1.99 \times 10^{30} \, \text{kg} \cdot 1.90 \times 10^{27} \, \text{kg}}{(7.79 \times 10^{11} \, \text{m})^2} \][/tex]
After calculation, the gravitational force [tex]\( F \)[/tex] is:
[tex]\[ F \approx 4.1585074673596537 \times 10^{23} \, \text{N} \][/tex]
To express this force to three significant figures, we round the number appropriately:
[tex]\[ F \approx 4.159 \times 10^{23} \, \text{N} \][/tex]
Therefore, the gravitational force between the Sun and Jupiter, to three significant figures, is:
[tex]\[ \boxed{4.159 \times 10^{23} \, \text{N}} \][/tex]
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot (\text{m/kg})^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the Sun, [tex]\( 1.99 \times 10^{30} \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.90 \times 10^{27} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the Sun and Jupiter, which needs to be converted from kilometers to meters.
First, we convert the distance from kilometers to meters.
[tex]\[ r = 7.79 \times 10^8 \, \text{km} \times 10^3 \, \left(\frac{\text{m}}{\text{km}}\right) = 7.79 \times 10^{11} \, \text{m} \][/tex]
Now, we can substitute these values into the gravitational force formula:
[tex]\[ F = \frac{6.67430 \times 10^{-11} \, \text{N(m/kg)}^2 \cdot 1.99 \times 10^{30} \, \text{kg} \cdot 1.90 \times 10^{27} \, \text{kg}}{(7.79 \times 10^{11} \, \text{m})^2} \][/tex]
After calculation, the gravitational force [tex]\( F \)[/tex] is:
[tex]\[ F \approx 4.1585074673596537 \times 10^{23} \, \text{N} \][/tex]
To express this force to three significant figures, we round the number appropriately:
[tex]\[ F \approx 4.159 \times 10^{23} \, \text{N} \][/tex]
Therefore, the gravitational force between the Sun and Jupiter, to three significant figures, is:
[tex]\[ \boxed{4.159 \times 10^{23} \, \text{N}} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.