Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To solve this problem, we need to calculate the gravitational force between the Sun and Jupiter using Newton's law of universal gravitation. The formula for gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by:
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot (\text{m/kg})^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the Sun, [tex]\( 1.99 \times 10^{30} \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.90 \times 10^{27} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the Sun and Jupiter, which needs to be converted from kilometers to meters.
First, we convert the distance from kilometers to meters.
[tex]\[ r = 7.79 \times 10^8 \, \text{km} \times 10^3 \, \left(\frac{\text{m}}{\text{km}}\right) = 7.79 \times 10^{11} \, \text{m} \][/tex]
Now, we can substitute these values into the gravitational force formula:
[tex]\[ F = \frac{6.67430 \times 10^{-11} \, \text{N(m/kg)}^2 \cdot 1.99 \times 10^{30} \, \text{kg} \cdot 1.90 \times 10^{27} \, \text{kg}}{(7.79 \times 10^{11} \, \text{m})^2} \][/tex]
After calculation, the gravitational force [tex]\( F \)[/tex] is:
[tex]\[ F \approx 4.1585074673596537 \times 10^{23} \, \text{N} \][/tex]
To express this force to three significant figures, we round the number appropriately:
[tex]\[ F \approx 4.159 \times 10^{23} \, \text{N} \][/tex]
Therefore, the gravitational force between the Sun and Jupiter, to three significant figures, is:
[tex]\[ \boxed{4.159 \times 10^{23} \, \text{N}} \][/tex]
[tex]\[ F = \frac{G \cdot m_1 \cdot m_2}{r^2} \][/tex]
Where:
- [tex]\( G \)[/tex] is the gravitational constant, approximately [tex]\( 6.67430 \times 10^{-11} \, \text{N} \cdot (\text{m/kg})^2 \)[/tex]
- [tex]\( m_1 \)[/tex] is the mass of the Sun, [tex]\( 1.99 \times 10^{30} \, \text{kg} \)[/tex]
- [tex]\( m_2 \)[/tex] is the mass of Jupiter, [tex]\( 1.90 \times 10^{27} \, \text{kg} \)[/tex]
- [tex]\( r \)[/tex] is the distance between the Sun and Jupiter, which needs to be converted from kilometers to meters.
First, we convert the distance from kilometers to meters.
[tex]\[ r = 7.79 \times 10^8 \, \text{km} \times 10^3 \, \left(\frac{\text{m}}{\text{km}}\right) = 7.79 \times 10^{11} \, \text{m} \][/tex]
Now, we can substitute these values into the gravitational force formula:
[tex]\[ F = \frac{6.67430 \times 10^{-11} \, \text{N(m/kg)}^2 \cdot 1.99 \times 10^{30} \, \text{kg} \cdot 1.90 \times 10^{27} \, \text{kg}}{(7.79 \times 10^{11} \, \text{m})^2} \][/tex]
After calculation, the gravitational force [tex]\( F \)[/tex] is:
[tex]\[ F \approx 4.1585074673596537 \times 10^{23} \, \text{N} \][/tex]
To express this force to three significant figures, we round the number appropriately:
[tex]\[ F \approx 4.159 \times 10^{23} \, \text{N} \][/tex]
Therefore, the gravitational force between the Sun and Jupiter, to three significant figures, is:
[tex]\[ \boxed{4.159 \times 10^{23} \, \text{N}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.