Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the equation of the line that passes through the point (6, 14) and is parallel to the line with the equation [tex]\(y = -\frac{4}{3} x - 1\)[/tex]?

A. [tex]\(y = -\frac{4}{3} x + 6\)[/tex]

B. [tex]\(y = \frac{3}{4} x + 8\)[/tex]

C. [tex]\(y = \frac{3}{4} x + 20\)[/tex]

D. [tex]\(y = -\frac{4}{3} x + 22\)[/tex]


Sagot :

To find the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line given by the equation [tex]\(y = -\frac{4}{3}x - 1\)[/tex], follow these steps:

1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].

2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].

3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].

4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]

5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]

6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]

So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]

Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.