Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

What is the equation of the line that passes through the point (6, 14) and is parallel to the line with the equation [tex]\(y = -\frac{4}{3} x - 1\)[/tex]?

A. [tex]\(y = -\frac{4}{3} x + 6\)[/tex]

B. [tex]\(y = \frac{3}{4} x + 8\)[/tex]

C. [tex]\(y = \frac{3}{4} x + 20\)[/tex]

D. [tex]\(y = -\frac{4}{3} x + 22\)[/tex]


Sagot :

To find the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line given by the equation [tex]\(y = -\frac{4}{3}x - 1\)[/tex], follow these steps:

1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].

2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].

3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].

4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]

5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]

6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]

So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]

Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].