Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line given by the equation [tex]\(y = -\frac{4}{3}x - 1\)[/tex], follow these steps:
1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].
2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].
4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]
5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]
6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].
1. Identify the slope of the given line:
The equation of the line is [tex]\(y = -\frac{4}{3}x - 1\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Thus, the slope ([tex]\(m\)[/tex]) of the given line is [tex]\(-\frac{4}{3}\)[/tex].
2. Determine the slope of the new, parallel line:
Lines that are parallel have the same slope. Therefore, the slope of the new line is also [tex]\(-\frac{4}{3}\)[/tex].
3. Use the point-slope form to find the equation of the new line:
The point-slope form of a line's equation is [tex]\(y - y_1 = m(x - x_1)\)[/tex], where [tex]\((x_1, y_1)\)[/tex] is a point on the line, and [tex]\(m\)[/tex] is the slope. In this case, the line must pass through [tex]\((6, 14)\)[/tex] and has a slope of [tex]\(-\frac{4}{3}\)[/tex].
4. Plug in the known values:
[tex]\[ y - 14 = -\frac{4}{3}(x - 6) \][/tex]
5. Distribute the slope and simplify:
[tex]\[ y - 14 = -\frac{4}{3}x + \frac{4}{3} \cdot 6 \][/tex]
[tex]\[ y - 14 = -\frac{4}{3}x + 8 \][/tex]
6. Solve for [tex]\(y\)[/tex] (convert to slope-intercept form):
[tex]\[ y = -\frac{4}{3}x + 8 + 14 \][/tex]
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
So, the equation of the line that passes through the point [tex]\((6,14)\)[/tex] and is parallel to the line [tex]\(y = -\frac{4}{3}x - 1\)[/tex] is:
[tex]\[ y = -\frac{4}{3}x + 22 \][/tex]
Hence, the correct answer is D. [tex]\(y = -\frac{4}{3}x + 22\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.