At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given functions represents exponential growth, we need to examine the base of the exponential part of each function. An exponential growth function has a base greater than 1.
Let’s analyze each function:
1. [tex]\( f(x) = 6 (0.25)^x \)[/tex]
- The base of the exponent is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 \)[/tex] is less than 1, this is an exponential decay function, not a growth function.
2. [tex]\( f(x) = 0.25 (5.25)^x \)[/tex]
- The base of the exponent is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 \)[/tex] is greater than 1, this is an exponential growth function.
3. [tex]\( f(x) = -4.25^x \)[/tex]
- The base of the exponent is [tex]\( -4.25 \)[/tex].
- Since the base is negative, this does not represent a traditional exponential growth or decay function.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]
- The base of the exponent is [tex]\( -1.25 \)[/tex].
- Despite being negative, this function can behave unpredictably depending on whether [tex]\( x \)[/tex] is an integer or not, and generally it's not considered exponential growth.
Among all the functions, the only function that has a base greater than 1 (which makes it an exponential growth function) is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
Therefore, the exponential growth function is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
The corresponding answer from the given choices is the second function. Hence, the answer is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
This corresponds to choice 3.
Let’s analyze each function:
1. [tex]\( f(x) = 6 (0.25)^x \)[/tex]
- The base of the exponent is [tex]\( 0.25 \)[/tex].
- Since [tex]\( 0.25 \)[/tex] is less than 1, this is an exponential decay function, not a growth function.
2. [tex]\( f(x) = 0.25 (5.25)^x \)[/tex]
- The base of the exponent is [tex]\( 5.25 \)[/tex].
- Since [tex]\( 5.25 \)[/tex] is greater than 1, this is an exponential growth function.
3. [tex]\( f(x) = -4.25^x \)[/tex]
- The base of the exponent is [tex]\( -4.25 \)[/tex].
- Since the base is negative, this does not represent a traditional exponential growth or decay function.
4. [tex]\( f(x) = (-1.25)^x \)[/tex]
- The base of the exponent is [tex]\( -1.25 \)[/tex].
- Despite being negative, this function can behave unpredictably depending on whether [tex]\( x \)[/tex] is an integer or not, and generally it's not considered exponential growth.
Among all the functions, the only function that has a base greater than 1 (which makes it an exponential growth function) is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
Therefore, the exponential growth function is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
The corresponding answer from the given choices is the second function. Hence, the answer is:
[tex]\[ f(x) = 0.25 (5.25)^x \][/tex]
This corresponds to choice 3.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.