Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which wave has a larger wavelength, we need to use the formula for the wavelength [tex]\(\lambda\)[/tex] of a wave, which is given by:
[tex]\[ \lambda = \frac{v}{f} \][/tex]
where:
- [tex]\(\lambda\)[/tex] is the wavelength
- [tex]\(v\)[/tex] is the velocity of the wave
- [tex]\(f\)[/tex] is the frequency of the wave
Let's calculate the wavelength of each wave step-by-step.
### Wavelength of Wave A
1. Given frequency [tex]\(f_A = 10\)[/tex] Hz
2. Given velocity [tex]\(v = 80\)[/tex] m/s
3. Using the formula:
[tex]\[ \lambda_A = \frac{v}{f_A} = \frac{80 \text{ m/s}}{10 \text{ Hz}} = 8 \text{ meters} \][/tex]
### Wavelength of Wave B
1. Given frequency [tex]\(f_B = 4\)[/tex] Hz
2. Given velocity [tex]\(v = 80\)[/tex] m/s
3. Using the formula:
[tex]\[ \lambda_B = \frac{v}{f_B} = \frac{80 \text{ m/s}}{4 \text{ Hz}} = 20 \text{ meters} \][/tex]
### Conclusion
- The wavelength of Wave A is 8 meters.
- The wavelength of Wave B is 20 meters.
Comparing the two wavelengths, Wave B has a larger wavelength (20 meters) compared to Wave A (8 meters).
Therefore, Wave B has the larger wavelength.
[tex]\[ \lambda = \frac{v}{f} \][/tex]
where:
- [tex]\(\lambda\)[/tex] is the wavelength
- [tex]\(v\)[/tex] is the velocity of the wave
- [tex]\(f\)[/tex] is the frequency of the wave
Let's calculate the wavelength of each wave step-by-step.
### Wavelength of Wave A
1. Given frequency [tex]\(f_A = 10\)[/tex] Hz
2. Given velocity [tex]\(v = 80\)[/tex] m/s
3. Using the formula:
[tex]\[ \lambda_A = \frac{v}{f_A} = \frac{80 \text{ m/s}}{10 \text{ Hz}} = 8 \text{ meters} \][/tex]
### Wavelength of Wave B
1. Given frequency [tex]\(f_B = 4\)[/tex] Hz
2. Given velocity [tex]\(v = 80\)[/tex] m/s
3. Using the formula:
[tex]\[ \lambda_B = \frac{v}{f_B} = \frac{80 \text{ m/s}}{4 \text{ Hz}} = 20 \text{ meters} \][/tex]
### Conclusion
- The wavelength of Wave A is 8 meters.
- The wavelength of Wave B is 20 meters.
Comparing the two wavelengths, Wave B has a larger wavelength (20 meters) compared to Wave A (8 meters).
Therefore, Wave B has the larger wavelength.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.