Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To understand the solution to the system of equations:
[tex]\[ y = -\frac{1}{2} x + 9 \][/tex]
[tex]\[ y = x + 7 \][/tex]
we need to determine the conditions under which these two lines intersect.
1. First equation analysis:
The equation [tex]\( y = -\frac{1}{2} x + 9 \)[/tex] represents a line with a slope of [tex]\(-\frac{1}{2}\)[/tex] and a y-intercept of [tex]\(9\)[/tex].
2. Second equation analysis:
The equation [tex]\( y = x + 7 \)[/tex] represents a line with a slope of [tex]\(1\)[/tex] and a y-intercept of [tex]\(7\)[/tex].
To find the intersection point of these two lines, we set the expressions for [tex]\( y \)[/tex] equal to each other because at the intersection point, both [tex]\( y \)[/tex]-values will be the same:
[tex]\[ -\frac{1}{2} x + 9 = x + 7 \][/tex]
Solving this equation for [tex]\( x \)[/tex]:
1. Combine like terms:
[tex]\[ 9 - 7 = x + \frac{1}{2} x \][/tex]
[tex]\[ 2 = 1.5x \][/tex]
2. Isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{2}{1.5} \][/tex]
[tex]\[ x = \frac{4}{3} \][/tex]
Thus, the [tex]\( x \)[/tex]-coordinate of the intersection point is [tex]\(\frac{4}{3}\)[/tex].
Next, we substitute [tex]\( x = \frac{4}{3} \)[/tex] back into either of the original equations to find the [tex]\( y \)[/tex]-coordinate. Using [tex]\( y = x + 7 \)[/tex]:
[tex]\[ y = \frac{4}{3} + 7 \][/tex]
[tex]\[ y = \frac{4}{3} + \frac{21}{3} \][/tex]
[tex]\[ y = \frac{25}{3} \][/tex]
Therefore, the intersection point is [tex]\(\left( \frac{4}{3}, \frac{25}{3} \right)\)[/tex].
So the correct description of the solution to the given system of equations is:
Line [tex]\( y = -\frac{1}{2} x + 9 \)[/tex] intersects line [tex]\( y = x + 7 \)[/tex].
[tex]\[ y = -\frac{1}{2} x + 9 \][/tex]
[tex]\[ y = x + 7 \][/tex]
we need to determine the conditions under which these two lines intersect.
1. First equation analysis:
The equation [tex]\( y = -\frac{1}{2} x + 9 \)[/tex] represents a line with a slope of [tex]\(-\frac{1}{2}\)[/tex] and a y-intercept of [tex]\(9\)[/tex].
2. Second equation analysis:
The equation [tex]\( y = x + 7 \)[/tex] represents a line with a slope of [tex]\(1\)[/tex] and a y-intercept of [tex]\(7\)[/tex].
To find the intersection point of these two lines, we set the expressions for [tex]\( y \)[/tex] equal to each other because at the intersection point, both [tex]\( y \)[/tex]-values will be the same:
[tex]\[ -\frac{1}{2} x + 9 = x + 7 \][/tex]
Solving this equation for [tex]\( x \)[/tex]:
1. Combine like terms:
[tex]\[ 9 - 7 = x + \frac{1}{2} x \][/tex]
[tex]\[ 2 = 1.5x \][/tex]
2. Isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{2}{1.5} \][/tex]
[tex]\[ x = \frac{4}{3} \][/tex]
Thus, the [tex]\( x \)[/tex]-coordinate of the intersection point is [tex]\(\frac{4}{3}\)[/tex].
Next, we substitute [tex]\( x = \frac{4}{3} \)[/tex] back into either of the original equations to find the [tex]\( y \)[/tex]-coordinate. Using [tex]\( y = x + 7 \)[/tex]:
[tex]\[ y = \frac{4}{3} + 7 \][/tex]
[tex]\[ y = \frac{4}{3} + \frac{21}{3} \][/tex]
[tex]\[ y = \frac{25}{3} \][/tex]
Therefore, the intersection point is [tex]\(\left( \frac{4}{3}, \frac{25}{3} \right)\)[/tex].
So the correct description of the solution to the given system of equations is:
Line [tex]\( y = -\frac{1}{2} x + 9 \)[/tex] intersects line [tex]\( y = x + 7 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.