Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the greatest possible value for [tex]\( t_5 \)[/tex] in a geometric series where the first term [tex]\( t_1 = 12 \)[/tex] and the sum of the first three terms [tex]\( S_3 = 372 \)[/tex], follow these steps:
1. Express the Sum of the First Three Terms:
The sum of the first three terms of a geometric series is given by:
[tex]\[ S_3 = t_1 \left( \frac{1 - r^3}{1 - r} \right) \][/tex]
Given [tex]\( S_3 = 372 \)[/tex] and [tex]\( t_1 = 12 \)[/tex], substitute these values into the equation:
[tex]\[ 372 = 12 \left( \frac{1 - r^3}{1 - r} \right) \][/tex]
2. Simplify the Equation:
Divide both sides of the equation by 12:
[tex]\[ 31 = \frac{1 - r^3}{1 - r} \][/tex]
Notice that [tex]\( \frac{1 - r^3}{1 - r} \)[/tex] is a well-known formula for the sum of a geometric series up to [tex]\( r^2 \)[/tex], which simplifies to:
[tex]\[ 1 + r + r^2 \][/tex]
Therefore, we have:
[tex]\[ 31 = 1 + r + r^2 \][/tex]
3. Form a Quadratic Equation:
Rearrange the equation into a standard quadratic form:
[tex]\[ r^2 + r - 30 = 0 \][/tex]
4. Solve the Quadratic Equation:
Use the quadratic formula:
[tex]\[ r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -30 \)[/tex]. Substitute these values into the formula:
[tex]\[ r = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-30)}}{2 \cdot 1} \][/tex]
[tex]\[ r = \frac{-1 \pm \sqrt{1 + 120}}{2} \][/tex]
[tex]\[ r = \frac{-1 \pm \sqrt{121}}{2} \][/tex]
[tex]\[ r = \frac{-1 \pm 11}{2} \][/tex]
Thus, we get two roots:
[tex]\[ r_1 = \frac{-1 + 11}{2} = 5 \][/tex]
[tex]\[ r_2 = \frac{-1 - 11}{2} = -6 \][/tex]
5. Calculate the Fifth Term [tex]\( t_5 \)[/tex]:
The nth term of a geometric series is given by:
[tex]\[ t_n = t_1 \cdot r^{n-1} \][/tex]
For [tex]\( t_5 \)[/tex]:
[tex]\[ t_5 = t_1 \cdot r^4 \][/tex]
Substitute [tex]\( t_1 = 12 \)[/tex] and the two values of [tex]\( r \)[/tex]:
- For [tex]\( r_1 = 5 \)[/tex]:
[tex]\[ t_5 = 12 \cdot 5^4 = 12 \cdot 625 = 7500 \][/tex]
- For [tex]\( r_2 = -6 \)[/tex]:
[tex]\[ t_5 = 12 \cdot (-6)^4 = 12 \cdot 1296 = 15552 \][/tex]
6. Identify the Greatest Possible Value:
Compare the two values of [tex]\( t_5 \)[/tex]:
[tex]\[ \text{Greatest possible value of } t_5 = \max(7500, 15552) = 15552 \][/tex]
Therefore, the greatest possible value for [tex]\( t_5 \)[/tex] is [tex]\( 15552 \)[/tex].
1. Express the Sum of the First Three Terms:
The sum of the first three terms of a geometric series is given by:
[tex]\[ S_3 = t_1 \left( \frac{1 - r^3}{1 - r} \right) \][/tex]
Given [tex]\( S_3 = 372 \)[/tex] and [tex]\( t_1 = 12 \)[/tex], substitute these values into the equation:
[tex]\[ 372 = 12 \left( \frac{1 - r^3}{1 - r} \right) \][/tex]
2. Simplify the Equation:
Divide both sides of the equation by 12:
[tex]\[ 31 = \frac{1 - r^3}{1 - r} \][/tex]
Notice that [tex]\( \frac{1 - r^3}{1 - r} \)[/tex] is a well-known formula for the sum of a geometric series up to [tex]\( r^2 \)[/tex], which simplifies to:
[tex]\[ 1 + r + r^2 \][/tex]
Therefore, we have:
[tex]\[ 31 = 1 + r + r^2 \][/tex]
3. Form a Quadratic Equation:
Rearrange the equation into a standard quadratic form:
[tex]\[ r^2 + r - 30 = 0 \][/tex]
4. Solve the Quadratic Equation:
Use the quadratic formula:
[tex]\[ r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 1 \)[/tex], [tex]\( b = 1 \)[/tex], and [tex]\( c = -30 \)[/tex]. Substitute these values into the formula:
[tex]\[ r = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-30)}}{2 \cdot 1} \][/tex]
[tex]\[ r = \frac{-1 \pm \sqrt{1 + 120}}{2} \][/tex]
[tex]\[ r = \frac{-1 \pm \sqrt{121}}{2} \][/tex]
[tex]\[ r = \frac{-1 \pm 11}{2} \][/tex]
Thus, we get two roots:
[tex]\[ r_1 = \frac{-1 + 11}{2} = 5 \][/tex]
[tex]\[ r_2 = \frac{-1 - 11}{2} = -6 \][/tex]
5. Calculate the Fifth Term [tex]\( t_5 \)[/tex]:
The nth term of a geometric series is given by:
[tex]\[ t_n = t_1 \cdot r^{n-1} \][/tex]
For [tex]\( t_5 \)[/tex]:
[tex]\[ t_5 = t_1 \cdot r^4 \][/tex]
Substitute [tex]\( t_1 = 12 \)[/tex] and the two values of [tex]\( r \)[/tex]:
- For [tex]\( r_1 = 5 \)[/tex]:
[tex]\[ t_5 = 12 \cdot 5^4 = 12 \cdot 625 = 7500 \][/tex]
- For [tex]\( r_2 = -6 \)[/tex]:
[tex]\[ t_5 = 12 \cdot (-6)^4 = 12 \cdot 1296 = 15552 \][/tex]
6. Identify the Greatest Possible Value:
Compare the two values of [tex]\( t_5 \)[/tex]:
[tex]\[ \text{Greatest possible value of } t_5 = \max(7500, 15552) = 15552 \][/tex]
Therefore, the greatest possible value for [tex]\( t_5 \)[/tex] is [tex]\( 15552 \)[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.