Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's analyze each of the three given reactions by creating potential energy diagrams and evaluating whether each reaction is endothermic or exothermic based on the given enthalpy values.
### 1. Synthesis Reaction: [tex]\( A + B \rightarrow AB \)[/tex]
#### Data:
- Reactants: [tex]\( A + B \)[/tex] with an energy of [tex]\(-15 \text{kJ}\)[/tex]
- Transition State: [tex]\( 30 \text{kJ} \)[/tex]
- Products: [tex]\( AB \)[/tex] with an energy of [tex]\( 20 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\(-15 \text{kJ}\)[/tex].
- The transition state rises to [tex]\( 30 \text{kJ} \)[/tex].
- The products end at [tex]\( 20 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\(-15 \text{kJ}\)[/tex].
2. Plot a peak (transition state) at [tex]\( 30 \text{kJ} \)[/tex].
3. End with products at [tex]\( 20 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 20 \text{kJ} - (-15 \text{kJ}) = 35 \text{kJ} \)[/tex]
- Since ΔH is positive, the reaction absorbs energy.
- Conclusion: The Synthesis Reaction is \textbf{endothermic}.
### 2. Single Replacement Reaction: [tex]\( C + AB \rightarrow CB + A \)[/tex]
#### Data:
- Reactants: [tex]\( C + AB \)[/tex] with an energy of [tex]\( 65 \text{kJ} \)[/tex]
- Transition State: [tex]\( 85 \text{kJ} \)[/tex]
- Products: [tex]\( CB + A \)[/tex] with an energy of [tex]\( 30 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\( 65 \text{kJ} \)[/tex].
- The transition state rises to [tex]\( 85 \text{kJ} \)[/tex].
- The products end at [tex]\( 30 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\( 65 \text{kJ} \)[/tex].
2. Plot a peak (transition state) at [tex]\( 85 \text{kJ} \)[/tex].
3. End with products at [tex]\( 30 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 30 \text{kJ} - 65 \text{kJ} = -35 \text{kJ} \)[/tex]
- Since ΔH is negative, the reaction releases energy.
- Conclusion: The Single Replacement Reaction is \textbf{exothermic}.
### 3. Double Replacement Reaction: [tex]\( AB + CD \rightarrow AD + BC \)[/tex]
#### Data:
- Reactants: [tex]\( AB + CD \)[/tex] with an energy of [tex]\( 10 \text{kJ} \)[/tex]
- Transition State: [tex]\( 75 \text{kJ} \)[/tex]
- Products: [tex]\( AD + BC \)[/tex] with an energy of [tex]\( 60 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\( 10 \text{kJ} \)[/tex].
- The transition state rises to [tex]\( 75 \text{kJ} \)[/tex].
- The products end at [tex]\( 60 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\( 10 \text{kJ} \)[/tex].
2. Plot a peak (transition state) at [tex]\( 75 \text{kJ} \)[/tex].
3. End with products at [tex]\( 60 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 60 \text{kJ} - 10 \text{kJ} = 50 \text{kJ} \)[/tex]
- Since ΔH is positive, the reaction absorbs energy.
- Conclusion: The Double Replacement Reaction is \textbf{endothermic}.
### Summary:
- Synthesis Reaction: [tex]\( \Delta H = 35 \text{kJ} \)[/tex] (endothermic)
- Single Replacement Reaction: [tex]\( \Delta H = -35 \text{kJ} \)[/tex] (exothermic)
- Double Replacement Reaction: [tex]\( \Delta H = 50 \text{kJ} \)[/tex] (endothermic)
### Illustrating the Diagrams:
To visually create the diagrams, you can plot the potential energy on the y-axis and the reaction pathway on the x-axis. Each reaction will show an initial point for the reactants, a peak for the transition state, followed by a final point for the products.
### 1. Synthesis Reaction: [tex]\( A + B \rightarrow AB \)[/tex]
#### Data:
- Reactants: [tex]\( A + B \)[/tex] with an energy of [tex]\(-15 \text{kJ}\)[/tex]
- Transition State: [tex]\( 30 \text{kJ} \)[/tex]
- Products: [tex]\( AB \)[/tex] with an energy of [tex]\( 20 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\(-15 \text{kJ}\)[/tex].
- The transition state rises to [tex]\( 30 \text{kJ} \)[/tex].
- The products end at [tex]\( 20 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\(-15 \text{kJ}\)[/tex].
2. Plot a peak (transition state) at [tex]\( 30 \text{kJ} \)[/tex].
3. End with products at [tex]\( 20 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 20 \text{kJ} - (-15 \text{kJ}) = 35 \text{kJ} \)[/tex]
- Since ΔH is positive, the reaction absorbs energy.
- Conclusion: The Synthesis Reaction is \textbf{endothermic}.
### 2. Single Replacement Reaction: [tex]\( C + AB \rightarrow CB + A \)[/tex]
#### Data:
- Reactants: [tex]\( C + AB \)[/tex] with an energy of [tex]\( 65 \text{kJ} \)[/tex]
- Transition State: [tex]\( 85 \text{kJ} \)[/tex]
- Products: [tex]\( CB + A \)[/tex] with an energy of [tex]\( 30 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\( 65 \text{kJ} \)[/tex].
- The transition state rises to [tex]\( 85 \text{kJ} \)[/tex].
- The products end at [tex]\( 30 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\( 65 \text{kJ} \)[/tex].
2. Plot a peak (transition state) at [tex]\( 85 \text{kJ} \)[/tex].
3. End with products at [tex]\( 30 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 30 \text{kJ} - 65 \text{kJ} = -35 \text{kJ} \)[/tex]
- Since ΔH is negative, the reaction releases energy.
- Conclusion: The Single Replacement Reaction is \textbf{exothermic}.
### 3. Double Replacement Reaction: [tex]\( AB + CD \rightarrow AD + BC \)[/tex]
#### Data:
- Reactants: [tex]\( AB + CD \)[/tex] with an energy of [tex]\( 10 \text{kJ} \)[/tex]
- Transition State: [tex]\( 75 \text{kJ} \)[/tex]
- Products: [tex]\( AD + BC \)[/tex] with an energy of [tex]\( 60 \text{kJ} \)[/tex]
#### Potential Energy Diagram:
- The reactants start at [tex]\( 10 \text{kJ} \)[/tex].
- The transition state rises to [tex]\( 75 \text{kJ} \)[/tex].
- The products end at [tex]\( 60 \text{kJ} \)[/tex].
#### Steps:
1. Start the diagram with reactants at [tex]\( 10 \text{kJ} \)[/tex].
2. Plot a peak (transition state) at [tex]\( 75 \text{kJ} \)[/tex].
3. End with products at [tex]\( 60 \text{kJ} \)[/tex].
#### Analysis:
- Enthalpy Change (ΔH): [tex]\( 60 \text{kJ} - 10 \text{kJ} = 50 \text{kJ} \)[/tex]
- Since ΔH is positive, the reaction absorbs energy.
- Conclusion: The Double Replacement Reaction is \textbf{endothermic}.
### Summary:
- Synthesis Reaction: [tex]\( \Delta H = 35 \text{kJ} \)[/tex] (endothermic)
- Single Replacement Reaction: [tex]\( \Delta H = -35 \text{kJ} \)[/tex] (exothermic)
- Double Replacement Reaction: [tex]\( \Delta H = 50 \text{kJ} \)[/tex] (endothermic)
### Illustrating the Diagrams:
To visually create the diagrams, you can plot the potential energy on the y-axis and the reaction pathway on the x-axis. Each reaction will show an initial point for the reactants, a peak for the transition state, followed by a final point for the products.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.