Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which number, when added to 0.4, produces an irrational number, we need to examine each of the given options:
A. [tex]\(\frac{2}{7}\)[/tex]
B. [tex]\(0.444 \ldots\)[/tex]
C. [tex]\(3 \pi\)[/tex]
D. [tex]\(\sqrt{9}\)[/tex]
Let's analyze each option:
1. Option A: [tex]\(\frac{2}{7}\)[/tex]
- [tex]\(\frac{2}{7}\)[/tex] is a rational number because it can be expressed as a fraction of two integers.
- Adding 0.4 (a rational number) to [tex]\(\frac{2}{7}\)[/tex] (also a rational number) will result in a rational number.
2. Option B: [tex]\(0.444 \ldots\)[/tex]
- [tex]\(0.444 \ldots\)[/tex] is also a rational number because it is a repeating decimal that can be expressed as a fraction.
- Adding 0.4 (a rational number) to [tex]\(0.444 \ldots\)[/tex] (also a rational number) will result in a rational number.
3. Option C: [tex]\(3 \pi\)[/tex]
- [tex]\(3 \pi\)[/tex] is an irrational number because it is a product of 3 (a rational number) and [tex]\(\pi\)[/tex] (an irrational number).
- Adding 0.4 (a rational number) to an irrational number ([tex]\(3 \pi\)[/tex]) results in an irrational number. This is because the sum of a rational number and an irrational number is always irrational.
4. Option D: [tex]\(\sqrt{9}\)[/tex]
- [tex]\(\sqrt{9}\)[/tex] equals 3, which is a rational number.
- Adding 0.4 (a rational number) to 3 (also a rational number) will result in a rational number.
From the analysis, the only option that produces an irrational number when added to 0.4 is option C: [tex]\(3 \pi\)[/tex].
The irrational sum when 0.4 is added to [tex]\(3 \pi\)[/tex] is approximately [tex]\(9.82477796076938\)[/tex].
Therefore, the correct answer is:
C. [tex]\(3 \pi\)[/tex]
A. [tex]\(\frac{2}{7}\)[/tex]
B. [tex]\(0.444 \ldots\)[/tex]
C. [tex]\(3 \pi\)[/tex]
D. [tex]\(\sqrt{9}\)[/tex]
Let's analyze each option:
1. Option A: [tex]\(\frac{2}{7}\)[/tex]
- [tex]\(\frac{2}{7}\)[/tex] is a rational number because it can be expressed as a fraction of two integers.
- Adding 0.4 (a rational number) to [tex]\(\frac{2}{7}\)[/tex] (also a rational number) will result in a rational number.
2. Option B: [tex]\(0.444 \ldots\)[/tex]
- [tex]\(0.444 \ldots\)[/tex] is also a rational number because it is a repeating decimal that can be expressed as a fraction.
- Adding 0.4 (a rational number) to [tex]\(0.444 \ldots\)[/tex] (also a rational number) will result in a rational number.
3. Option C: [tex]\(3 \pi\)[/tex]
- [tex]\(3 \pi\)[/tex] is an irrational number because it is a product of 3 (a rational number) and [tex]\(\pi\)[/tex] (an irrational number).
- Adding 0.4 (a rational number) to an irrational number ([tex]\(3 \pi\)[/tex]) results in an irrational number. This is because the sum of a rational number and an irrational number is always irrational.
4. Option D: [tex]\(\sqrt{9}\)[/tex]
- [tex]\(\sqrt{9}\)[/tex] equals 3, which is a rational number.
- Adding 0.4 (a rational number) to 3 (also a rational number) will result in a rational number.
From the analysis, the only option that produces an irrational number when added to 0.4 is option C: [tex]\(3 \pi\)[/tex].
The irrational sum when 0.4 is added to [tex]\(3 \pi\)[/tex] is approximately [tex]\(9.82477796076938\)[/tex].
Therefore, the correct answer is:
C. [tex]\(3 \pi\)[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.