Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Step-by-Step Solution:
To find the completely simplified sum of the given polynomials, let's start by writing the two polynomials clearly and then sum them.
Given polynomials:
[tex]\[ p_1 = 3x^2 y^2 - 2xy^5 \][/tex]
[tex]\[ p_2 = -3x^2 y^2 + 3x^4 y \][/tex]
Step 1: Sum the polynomials
We sum [tex]\( p_1 \)[/tex] and [tex]\( p_2 \)[/tex]:
[tex]\[ (3x^2 y^2 - 2xy^5) + (-3x^2 y^2 + 3x^4 y) \][/tex]
Combine like terms:
[tex]\[ (3x^2 y^2 - 3x^2 y^2) + 3x^4 y - 2xy^5 \][/tex]
Notice that [tex]\( 3x^2 y^2 \)[/tex] and [tex]\( -3x^2 y^2 \)[/tex] cancel each other out:
[tex]\[ 0 + 3x^4 y - 2xy^5 \][/tex]
So, the resulting polynomial is:
[tex]\[ 3x^4 y - 2xy^5 \][/tex]
Step 2: Analyze the resulting polynomial
We need to determine the number of terms, degree of the polynomial, and its type.
Step 3: Count the number of terms
The resulting polynomial [tex]\( 3x^4 y - 2xy^5 \)[/tex] has two terms: [tex]\( 3x^4 y \)[/tex] and [tex]\( -2xy^5 \)[/tex].
Step 4: Determine the degree of the polynomial
The degree of a polynomial is the highest degree of its terms.
For the term [tex]\( 3x^4 y \)[/tex]:
- The degree is [tex]\( 4 + 1 = 5 \)[/tex].
For the term [tex]\( -2xy^5 \)[/tex]:
- The degree is [tex]\( 1 + 5 = 6 \)[/tex].
So, the highest degree among the terms [tex]\( 3x^4 y \)[/tex] and [tex]\( -2xy^5 \)[/tex] is 6.
Step 5: Conclusion
The resulting polynomial [tex]\( 3x^4 y - 2xy^5 \)[/tex] is a binomial (since it has two terms) with a degree of 6.
Thus, the statement that is true about the completely simplified sum of the polynomials is:
[tex]\[ \text{The sum is a binomial with a degree of 6.} \][/tex]
To find the completely simplified sum of the given polynomials, let's start by writing the two polynomials clearly and then sum them.
Given polynomials:
[tex]\[ p_1 = 3x^2 y^2 - 2xy^5 \][/tex]
[tex]\[ p_2 = -3x^2 y^2 + 3x^4 y \][/tex]
Step 1: Sum the polynomials
We sum [tex]\( p_1 \)[/tex] and [tex]\( p_2 \)[/tex]:
[tex]\[ (3x^2 y^2 - 2xy^5) + (-3x^2 y^2 + 3x^4 y) \][/tex]
Combine like terms:
[tex]\[ (3x^2 y^2 - 3x^2 y^2) + 3x^4 y - 2xy^5 \][/tex]
Notice that [tex]\( 3x^2 y^2 \)[/tex] and [tex]\( -3x^2 y^2 \)[/tex] cancel each other out:
[tex]\[ 0 + 3x^4 y - 2xy^5 \][/tex]
So, the resulting polynomial is:
[tex]\[ 3x^4 y - 2xy^5 \][/tex]
Step 2: Analyze the resulting polynomial
We need to determine the number of terms, degree of the polynomial, and its type.
Step 3: Count the number of terms
The resulting polynomial [tex]\( 3x^4 y - 2xy^5 \)[/tex] has two terms: [tex]\( 3x^4 y \)[/tex] and [tex]\( -2xy^5 \)[/tex].
Step 4: Determine the degree of the polynomial
The degree of a polynomial is the highest degree of its terms.
For the term [tex]\( 3x^4 y \)[/tex]:
- The degree is [tex]\( 4 + 1 = 5 \)[/tex].
For the term [tex]\( -2xy^5 \)[/tex]:
- The degree is [tex]\( 1 + 5 = 6 \)[/tex].
So, the highest degree among the terms [tex]\( 3x^4 y \)[/tex] and [tex]\( -2xy^5 \)[/tex] is 6.
Step 5: Conclusion
The resulting polynomial [tex]\( 3x^4 y - 2xy^5 \)[/tex] is a binomial (since it has two terms) with a degree of 6.
Thus, the statement that is true about the completely simplified sum of the polynomials is:
[tex]\[ \text{The sum is a binomial with a degree of 6.} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.