Answered

Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What type of number can be written as a fraction [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q\)[/tex] is not equal to zero?

A. A rational number
B. An irrational number
C. [tex]\(\pi\)[/tex]
D. All numbers


Sagot :

To determine what type of number can be written as a fraction [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex], let's understand the definitions of each of the given choices.

A. A rational number
- A rational number is any number that can be expressed as [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex]. For example, [tex]\(\frac{1}{2}\)[/tex], [tex]\(\frac{5}{3}\)[/tex], and [tex]\(\frac{-4}{7}\)[/tex] are all rational numbers.

B. An irrational number
- An irrational number cannot be expressed as a fraction [tex]\(\frac{p}{q}\)[/tex]. It cannot be represented as a simple fraction where both [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers. Examples include [tex]\(\sqrt{2}\)[/tex] and [tex]\(\pi\)[/tex].

C. [tex]\(\pi\)[/tex]
- [tex]\(\pi\)[/tex] is a well-known irrational number and cannot be written as an exact fraction of two integers.

D. All numbers
- Not all numbers can be written as a fraction [tex]\(\frac{p}{q}\)[/tex]. For example, irrational numbers do not meet this criterion.

Given these definitions, the correct choice is:

A. A rational number

So, the type of number that can be written as a fraction [tex]\(\frac{p}{q}\)[/tex], where [tex]\(p\)[/tex] and [tex]\(q\)[/tex] are integers and [tex]\(q \neq 0\)[/tex], is a rational number.