At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the end behavior of the given function [tex]\( f(x) \)[/tex] based on the table, let's analyze the values provided:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 18 \\ \hline -3 & 9 \\ \hline -2 & 6 \\ \hline -1 & 3 \\ \hline 0 & 0 \\ \hline 1 & -3 \\ \hline 2 & -6 \\ \hline 3 & -9 \\ \hline 4 & -18 \\ \hline \end{array} \][/tex]
1. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] increases:
- When [tex]\( x \)[/tex] increases from 1 to 4, [tex]\( f(x) \)[/tex] decreases: [tex]\( -3, -6, -9, -18 \)[/tex].
- This trend suggests that as [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \)[/tex] continues to decrease.
2. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] decreases:
- When [tex]\( x \)[/tex] decreases from -1 to -4, [tex]\( f(x) \)[/tex] decreases: [tex]\( 3, 6, 9, 18 \)[/tex].
- However, since these are positive values that eventually decrease (as observed from the entire trend from positive to negative values), we see that the function is decreasing overall.
Combining these observations:
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
Therefore, the best prediction for the end behavior of the graph of [tex]\( f(x) \)[/tex] is:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex], and as [tex]\( x \rightarrow -\infty, f(x) \rightarrow -\infty \)[/tex]."
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 18 \\ \hline -3 & 9 \\ \hline -2 & 6 \\ \hline -1 & 3 \\ \hline 0 & 0 \\ \hline 1 & -3 \\ \hline 2 & -6 \\ \hline 3 & -9 \\ \hline 4 & -18 \\ \hline \end{array} \][/tex]
1. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] increases:
- When [tex]\( x \)[/tex] increases from 1 to 4, [tex]\( f(x) \)[/tex] decreases: [tex]\( -3, -6, -9, -18 \)[/tex].
- This trend suggests that as [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \)[/tex] continues to decrease.
2. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] decreases:
- When [tex]\( x \)[/tex] decreases from -1 to -4, [tex]\( f(x) \)[/tex] decreases: [tex]\( 3, 6, 9, 18 \)[/tex].
- However, since these are positive values that eventually decrease (as observed from the entire trend from positive to negative values), we see that the function is decreasing overall.
Combining these observations:
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
Therefore, the best prediction for the end behavior of the graph of [tex]\( f(x) \)[/tex] is:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex], and as [tex]\( x \rightarrow -\infty, f(x) \rightarrow -\infty \)[/tex]."
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.