Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the end behavior of the given function [tex]\( f(x) \)[/tex] based on the table, let's analyze the values provided:
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 18 \\ \hline -3 & 9 \\ \hline -2 & 6 \\ \hline -1 & 3 \\ \hline 0 & 0 \\ \hline 1 & -3 \\ \hline 2 & -6 \\ \hline 3 & -9 \\ \hline 4 & -18 \\ \hline \end{array} \][/tex]
1. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] increases:
- When [tex]\( x \)[/tex] increases from 1 to 4, [tex]\( f(x) \)[/tex] decreases: [tex]\( -3, -6, -9, -18 \)[/tex].
- This trend suggests that as [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \)[/tex] continues to decrease.
2. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] decreases:
- When [tex]\( x \)[/tex] decreases from -1 to -4, [tex]\( f(x) \)[/tex] decreases: [tex]\( 3, 6, 9, 18 \)[/tex].
- However, since these are positive values that eventually decrease (as observed from the entire trend from positive to negative values), we see that the function is decreasing overall.
Combining these observations:
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
Therefore, the best prediction for the end behavior of the graph of [tex]\( f(x) \)[/tex] is:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex], and as [tex]\( x \rightarrow -\infty, f(x) \rightarrow -\infty \)[/tex]."
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -4 & 18 \\ \hline -3 & 9 \\ \hline -2 & 6 \\ \hline -1 & 3 \\ \hline 0 & 0 \\ \hline 1 & -3 \\ \hline 2 & -6 \\ \hline 3 & -9 \\ \hline 4 & -18 \\ \hline \end{array} \][/tex]
1. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] increases:
- When [tex]\( x \)[/tex] increases from 1 to 4, [tex]\( f(x) \)[/tex] decreases: [tex]\( -3, -6, -9, -18 \)[/tex].
- This trend suggests that as [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \)[/tex] continues to decrease.
2. Analyzing [tex]\( f(x) \)[/tex] as [tex]\( x \)[/tex] decreases:
- When [tex]\( x \)[/tex] decreases from -1 to -4, [tex]\( f(x) \)[/tex] decreases: [tex]\( 3, 6, 9, 18 \)[/tex].
- However, since these are positive values that eventually decrease (as observed from the entire trend from positive to negative values), we see that the function is decreasing overall.
Combining these observations:
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( f(x) \rightarrow -\infty \)[/tex].
Therefore, the best prediction for the end behavior of the graph of [tex]\( f(x) \)[/tex] is:
"As [tex]\( x \rightarrow \infty, f(x) \rightarrow -\infty \)[/tex], and as [tex]\( x \rightarrow -\infty, f(x) \rightarrow -\infty \)[/tex]."
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.