Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the annual rate of change for Bruce's investment, we can use the formula for compound interest growth. Let's break down the problem step by step.
1. Identify the initial and final values of the investment:
- Initial value (Principal) [tex]\( P = \$ 24,000 \)[/tex]
- Final value [tex]\( A = \$ 108,595 \)[/tex]
- Number of years [tex]\( t = 20 \)[/tex]
2. Set up the formula for compound interest:
The general formula for the future value of an investment is given by:
[tex]\[ A = P \times (1 + r)^t \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount
- [tex]\( P \)[/tex] is the principal amount
- [tex]\( r \)[/tex] is the annual rate of change (expressed as a decimal)
- [tex]\( t \)[/tex] is the number of years
3. Rearrange the formula to solve for the annual rate [tex]\( r \)[/tex]:
[tex]\[ \frac{A}{P} = (1 + r)^t \][/tex]
Take the t-th root of both sides to isolate [tex]\( 1 + r \)[/tex]:
[tex]\[ \left( \frac{A}{P} \right)^{\frac{1}{t}} = 1 + r \][/tex]
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \left( \frac{A}{P} \right)^{\frac{1}{t}} - 1 \][/tex]
4. Substitute the known values into the equation:
[tex]\[ r = \left( \frac{108,595}{24,000} \right)^{\frac{1}{20}} - 1 \][/tex]
5. Calculate the result:
[tex]\[ r \approx \left( 4.5248 \right)^{\frac{1}{20}} - 1 \][/tex]
[tex]\[ r \approx 0.07840012466618695 \][/tex]
6. Convert the annual rate to a percentage:
[tex]\[ \text{Annual rate} = r \times 100 \approx 7.840012466618695 \% \][/tex]
7. Round to two decimal places:
[tex]\[ \text{Annual rate} \approx 7.84\% \][/tex]
Therefore, the annual rate of change was [tex]\( \boxed{7.84\%} \)[/tex].
1. Identify the initial and final values of the investment:
- Initial value (Principal) [tex]\( P = \$ 24,000 \)[/tex]
- Final value [tex]\( A = \$ 108,595 \)[/tex]
- Number of years [tex]\( t = 20 \)[/tex]
2. Set up the formula for compound interest:
The general formula for the future value of an investment is given by:
[tex]\[ A = P \times (1 + r)^t \][/tex]
where:
- [tex]\( A \)[/tex] is the final amount
- [tex]\( P \)[/tex] is the principal amount
- [tex]\( r \)[/tex] is the annual rate of change (expressed as a decimal)
- [tex]\( t \)[/tex] is the number of years
3. Rearrange the formula to solve for the annual rate [tex]\( r \)[/tex]:
[tex]\[ \frac{A}{P} = (1 + r)^t \][/tex]
Take the t-th root of both sides to isolate [tex]\( 1 + r \)[/tex]:
[tex]\[ \left( \frac{A}{P} \right)^{\frac{1}{t}} = 1 + r \][/tex]
Solve for [tex]\( r \)[/tex]:
[tex]\[ r = \left( \frac{A}{P} \right)^{\frac{1}{t}} - 1 \][/tex]
4. Substitute the known values into the equation:
[tex]\[ r = \left( \frac{108,595}{24,000} \right)^{\frac{1}{20}} - 1 \][/tex]
5. Calculate the result:
[tex]\[ r \approx \left( 4.5248 \right)^{\frac{1}{20}} - 1 \][/tex]
[tex]\[ r \approx 0.07840012466618695 \][/tex]
6. Convert the annual rate to a percentage:
[tex]\[ \text{Annual rate} = r \times 100 \approx 7.840012466618695 \% \][/tex]
7. Round to two decimal places:
[tex]\[ \text{Annual rate} \approx 7.84\% \][/tex]
Therefore, the annual rate of change was [tex]\( \boxed{7.84\%} \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.