Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's break down the problem step by step.
### Step 1: Determine Total Number of Marbles
First, we need to calculate the total number of marbles in the bag:
- Red marbles: 10
- Yellow marbles: 15
- Green marbles: 5
- Blue marbles: 20
Total marbles = [tex]\(10 + 15 + 5 + 20 = 50 \)[/tex]
### Step 2: Choose 1 Red Marble and 1 Blue Marble
Next, we need to determine the number of ways to choose 1 red marble and 1 blue marble:
- The number of ways to choose 1 red marble from 10 red marbles = [tex]\(\binom{10}{1}\)[/tex]
- The number of ways to choose 1 blue marble from 20 blue marbles = [tex]\(\binom{20}{1}\)[/tex]
The total number of ways to choose 1 red marble and 1 blue marble is:
[tex]\[ \binom{10}{1} \times \binom{20}{1} = 10 \times 20 = 200 \][/tex]
### Step 3: Total Number of Ways to Choose Any 2 Marbles
We need to calculate the total number of ways to choose any 2 marbles out of the 50 marbles. This can be calculated using the combination formula:
[tex]\[ \binom{50}{2} = \frac{50!}{2!(50-2)!} = \frac{50 \times 49}{2 \times 1} = 1225 \][/tex]
### Step 4: Computing the Probability
The probability of drawing 1 red marble and 1 blue marble is the ratio of the number of favorable outcomes to the total number of outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of ways to choose 1 red and 1 blue}}{\text{Total number of ways to choose any 2 marbles}} = \frac{200}{1225} \][/tex]
When calculated, this fraction simplifies, but let's focus on the expression forms given in the options.
### Step 5: Matching the Expression
From the given options, the expression that represents the probability as calculated is:
[tex]\[ \frac{\left(\binom{10}{1}\right)\left(\binom{20}{1}\right)}{\binom{50}{2}} \][/tex]
This matches with:
[tex]\[ \frac{\left({ }_{10} C_1\right)\left({ }_{20} C_1\right)}{{ }_{50} C_2} \][/tex]
Thus, the correct expression is:
[tex]\[ \frac{\left({ }_{10} C_1\right)\left({ }_{20} C_1\right)}{{ }_{50} C_2} \][/tex]
### Step 1: Determine Total Number of Marbles
First, we need to calculate the total number of marbles in the bag:
- Red marbles: 10
- Yellow marbles: 15
- Green marbles: 5
- Blue marbles: 20
Total marbles = [tex]\(10 + 15 + 5 + 20 = 50 \)[/tex]
### Step 2: Choose 1 Red Marble and 1 Blue Marble
Next, we need to determine the number of ways to choose 1 red marble and 1 blue marble:
- The number of ways to choose 1 red marble from 10 red marbles = [tex]\(\binom{10}{1}\)[/tex]
- The number of ways to choose 1 blue marble from 20 blue marbles = [tex]\(\binom{20}{1}\)[/tex]
The total number of ways to choose 1 red marble and 1 blue marble is:
[tex]\[ \binom{10}{1} \times \binom{20}{1} = 10 \times 20 = 200 \][/tex]
### Step 3: Total Number of Ways to Choose Any 2 Marbles
We need to calculate the total number of ways to choose any 2 marbles out of the 50 marbles. This can be calculated using the combination formula:
[tex]\[ \binom{50}{2} = \frac{50!}{2!(50-2)!} = \frac{50 \times 49}{2 \times 1} = 1225 \][/tex]
### Step 4: Computing the Probability
The probability of drawing 1 red marble and 1 blue marble is the ratio of the number of favorable outcomes to the total number of outcomes:
[tex]\[ \text{Probability} = \frac{\text{Number of ways to choose 1 red and 1 blue}}{\text{Total number of ways to choose any 2 marbles}} = \frac{200}{1225} \][/tex]
When calculated, this fraction simplifies, but let's focus on the expression forms given in the options.
### Step 5: Matching the Expression
From the given options, the expression that represents the probability as calculated is:
[tex]\[ \frac{\left(\binom{10}{1}\right)\left(\binom{20}{1}\right)}{\binom{50}{2}} \][/tex]
This matches with:
[tex]\[ \frac{\left({ }_{10} C_1\right)\left({ }_{20} C_1\right)}{{ }_{50} C_2} \][/tex]
Thus, the correct expression is:
[tex]\[ \frac{\left({ }_{10} C_1\right)\left({ }_{20} C_1\right)}{{ }_{50} C_2} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.