Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the energy generated from freezing [tex]\(2.5 \text{ g}\)[/tex] of water, you need to follow these steps:
1. Determine the number of moles of water:
- Given the mass of water [tex]\(2.5 \text{ g}\)[/tex] and its molar mass [tex]\(18.02 \text{ g/mol}\)[/tex], calculate the number of moles using the formula:
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass}} \][/tex]
Plugging in the values:
[tex]\[ \text{moles of water} = \frac{2.5 \text{ g}}{18.02 \text{ g/mol}} \approx 0.1387 \text{ mol} \][/tex]
2. Calculate the energy generated from freezing:
- The enthalpy change for the phase transition from liquid to solid (freezing point) is known as the enthalpy of fusion ([tex]\(\Delta H_{\text{fusion}}\)[/tex]), which is given as [tex]\(6.03 \text{ kJ/mol}\)[/tex].
- The energy generated can be calculated by multiplying the number of moles of water by the enthalpy of fusion:
[tex]\[ \text{energy generated} = \text{moles of water} \times \Delta H_{\text{fusion}} \][/tex]
Plugging in the values:
[tex]\[ \text{energy generated} = 0.1387 \text{ mol} \times 6.03 \text{ kJ/mol} \approx 0.8366 \text{ kJ} \][/tex]
Therefore, the correct option is:
B. [tex]\(2.5 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} \times 6.03 \text{ kJ/mol}\)[/tex]
1. Determine the number of moles of water:
- Given the mass of water [tex]\(2.5 \text{ g}\)[/tex] and its molar mass [tex]\(18.02 \text{ g/mol}\)[/tex], calculate the number of moles using the formula:
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass}} \][/tex]
Plugging in the values:
[tex]\[ \text{moles of water} = \frac{2.5 \text{ g}}{18.02 \text{ g/mol}} \approx 0.1387 \text{ mol} \][/tex]
2. Calculate the energy generated from freezing:
- The enthalpy change for the phase transition from liquid to solid (freezing point) is known as the enthalpy of fusion ([tex]\(\Delta H_{\text{fusion}}\)[/tex]), which is given as [tex]\(6.03 \text{ kJ/mol}\)[/tex].
- The energy generated can be calculated by multiplying the number of moles of water by the enthalpy of fusion:
[tex]\[ \text{energy generated} = \text{moles of water} \times \Delta H_{\text{fusion}} \][/tex]
Plugging in the values:
[tex]\[ \text{energy generated} = 0.1387 \text{ mol} \times 6.03 \text{ kJ/mol} \approx 0.8366 \text{ kJ} \][/tex]
Therefore, the correct option is:
B. [tex]\(2.5 \text{ g} \times \frac{1 \text{ mol}}{18.02 \text{ g}} \times 6.03 \text{ kJ/mol}\)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.