Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Using the data from the tables provided, let's determine the probabilities for each of the given situations.
### Step 1: Determine the Number of Successful Establishments
For each type of establishment (Food, Retail, and Service), we need to determine the number of successful establishments. A successful establishment is one that remains open (not closed).
#### Food Establishments:
- Opened: 3,193
- Closed: 1,977
Number of successful food establishments:
[tex]\[ \text{Food success} = \text{Opened} - \text{Closed} = 3,193 - 1,977 = 1,216 \][/tex]
#### Retail Establishments:
- Opened: 2,280
- Closed: 1,626
Number of successful retail establishments:
[tex]\[ \text{Retail success} = \text{Opened} - \text{Closed} = 2,280 - 1,626 = 654 \][/tex]
#### Service Establishments:
- Opened: 5,045
- Closed: 3,548
Number of successful service establishments:
[tex]\[ \text{Service success} = \text{Opened} - \text{Closed} = 5,045 - 3,548 = 1,497 \][/tex]
### Step 2: Calculate the Probabilities
Now, we need to calculate the probabilities for each situation.
#### Situation I: A food establishment succeeding and earning [tex]$50,000 or more For a food establishment to earn $[/tex]50,000 or more, the categories to consider are [tex]$50-75k$[/tex], [tex]$75-100k$[/tex], and over [tex]$100k$[/tex]. Summing up these categories:
[tex]\[ \text{Food} \geq \$50k = 601 + 258 + 114 = 973 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{I}} = \frac{\text{Food} \geq \$50k}{\text{Food success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{I}} = \frac{973}{1,216} \times 100 \approx 80.02\% \][/tex]
#### Situation II: A service establishment succeeding and earning between [tex]$25,000 and $[/tex]75,000
For a service establishment to earn between [tex]$25,000 and $[/tex]75,000, the categories to consider are [tex]$25-50k$[/tex] and [tex]$50-75k$[/tex]. Summing up these categories:
[tex]\[ \text{Service}_{\$25k-\$75k} = 739 + 432 = 1,171 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{II}} = \frac{\text{Service}_{\$25k-\$75k}}{\text{Service success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{II}} = \frac{1,171}{1,497} \times 100 \approx 78.22\% \][/tex]
#### Situation III: A retail establishment succeeding and earning no more than [tex]$50,000 For a retail establishment to earn no more than $[/tex]50,000, the categories to consider are up to [tex]$25k$[/tex] and [tex]$25-50k$[/tex]. Summing up these categories:
[tex]\[ \text{Retail} \leq \$50k = 813 + 548 = 1,361 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{III}} = \frac{\text{Retail} \leq \$50k}{\text{Retail success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{III}} = \frac{1,361}{654} \times 100 \approx 208.10\% \][/tex]
### Step 3: Determine Situations with at least 15% Probability
We need to determine which of the probabilities calculated are at least 15%:
1. [tex]\(\text{Prob}_{\text{I}} \approx 80.02\%\)[/tex] (greater than 15%)
2. [tex]\(\text{Prob}_{\text{II}} \approx 78.22\%\)[/tex] (greater than 15%)
3. [tex]\(\text{Prob}_{\text{III}} \approx 208.10\%\)[/tex] (greater than 15%)
Therefore, all three situations have a probability of at least 15%:
[tex]\[ \boxed{[1, 2, 3]} \][/tex]
Thus, based on the data, the correct answer is:
c. I, II, and III
### Step 1: Determine the Number of Successful Establishments
For each type of establishment (Food, Retail, and Service), we need to determine the number of successful establishments. A successful establishment is one that remains open (not closed).
#### Food Establishments:
- Opened: 3,193
- Closed: 1,977
Number of successful food establishments:
[tex]\[ \text{Food success} = \text{Opened} - \text{Closed} = 3,193 - 1,977 = 1,216 \][/tex]
#### Retail Establishments:
- Opened: 2,280
- Closed: 1,626
Number of successful retail establishments:
[tex]\[ \text{Retail success} = \text{Opened} - \text{Closed} = 2,280 - 1,626 = 654 \][/tex]
#### Service Establishments:
- Opened: 5,045
- Closed: 3,548
Number of successful service establishments:
[tex]\[ \text{Service success} = \text{Opened} - \text{Closed} = 5,045 - 3,548 = 1,497 \][/tex]
### Step 2: Calculate the Probabilities
Now, we need to calculate the probabilities for each situation.
#### Situation I: A food establishment succeeding and earning [tex]$50,000 or more For a food establishment to earn $[/tex]50,000 or more, the categories to consider are [tex]$50-75k$[/tex], [tex]$75-100k$[/tex], and over [tex]$100k$[/tex]. Summing up these categories:
[tex]\[ \text{Food} \geq \$50k = 601 + 258 + 114 = 973 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{I}} = \frac{\text{Food} \geq \$50k}{\text{Food success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{I}} = \frac{973}{1,216} \times 100 \approx 80.02\% \][/tex]
#### Situation II: A service establishment succeeding and earning between [tex]$25,000 and $[/tex]75,000
For a service establishment to earn between [tex]$25,000 and $[/tex]75,000, the categories to consider are [tex]$25-50k$[/tex] and [tex]$50-75k$[/tex]. Summing up these categories:
[tex]\[ \text{Service}_{\$25k-\$75k} = 739 + 432 = 1,171 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{II}} = \frac{\text{Service}_{\$25k-\$75k}}{\text{Service success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{II}} = \frac{1,171}{1,497} \times 100 \approx 78.22\% \][/tex]
#### Situation III: A retail establishment succeeding and earning no more than [tex]$50,000 For a retail establishment to earn no more than $[/tex]50,000, the categories to consider are up to [tex]$25k$[/tex] and [tex]$25-50k$[/tex]. Summing up these categories:
[tex]\[ \text{Retail} \leq \$50k = 813 + 548 = 1,361 \][/tex]
Probability:
[tex]\[ \text{Prob}_{\text{III}} = \frac{\text{Retail} \leq \$50k}{\text{Retail success}} \times 100 \][/tex]
[tex]\[ \text{Prob}_{\text{III}} = \frac{1,361}{654} \times 100 \approx 208.10\% \][/tex]
### Step 3: Determine Situations with at least 15% Probability
We need to determine which of the probabilities calculated are at least 15%:
1. [tex]\(\text{Prob}_{\text{I}} \approx 80.02\%\)[/tex] (greater than 15%)
2. [tex]\(\text{Prob}_{\text{II}} \approx 78.22\%\)[/tex] (greater than 15%)
3. [tex]\(\text{Prob}_{\text{III}} \approx 208.10\%\)[/tex] (greater than 15%)
Therefore, all three situations have a probability of at least 15%:
[tex]\[ \boxed{[1, 2, 3]} \][/tex]
Thus, based on the data, the correct answer is:
c. I, II, and III
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.