Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's solve the given quadratic equation step by step:
The original equation is:
[tex]\[ 4(x + 2)^2 + 13 = 29 \][/tex]
Step 1: Simplify the equation by isolating the quadratic term.
First, subtract 13 from both sides of the equation to remove the constant term on the left-hand side.
[tex]\[ 4(x + 2)^2 + 13 - 13 = 29 - 13 \][/tex]
[tex]\[ 4(x + 2)^2 = 16 \][/tex]
Step 2: Simplify the coefficient of the quadratic term.
Next, divide both sides of the equation by 4 to further isolate [tex]\((x + 2)^2\)[/tex].
[tex]\[ \frac{4(x + 2)^2}{4} = \frac{16}{4} \][/tex]
[tex]\[ (x + 2)^2 = 4 \][/tex]
Step 3: Solve for [tex]\(x + 2\)[/tex].
Take the square root of both sides of the equation to eliminate the square. Remember to consider both the positive and negative square roots.
[tex]\[ x + 2 = \pm\sqrt{4} \][/tex]
[tex]\[ x + 2 = \pm2 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
Lastly, solve for [tex]\(x\)[/tex] by subtracting 2 from both sides in each case.
1. For [tex]\(x + 2 = 2\)[/tex]:
[tex]\[ x + 2 = 2 \][/tex]
[tex]\[ x = 2 - 2 \][/tex]
[tex]\[ x = 0 \][/tex]
2. For [tex]\(x + 2 = -2\)[/tex]:
[tex]\[ x + 2 = -2 \][/tex]
[tex]\[ x = -2 - 2 \][/tex]
[tex]\[ x = -4 \][/tex]
Summary:
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(4(x + 2)^2 + 13 = 29\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = -4 \][/tex]
So, the solutions to the equation are:
[tex]\[ \boxed{0 \text{ and } -4} \][/tex]
The original equation is:
[tex]\[ 4(x + 2)^2 + 13 = 29 \][/tex]
Step 1: Simplify the equation by isolating the quadratic term.
First, subtract 13 from both sides of the equation to remove the constant term on the left-hand side.
[tex]\[ 4(x + 2)^2 + 13 - 13 = 29 - 13 \][/tex]
[tex]\[ 4(x + 2)^2 = 16 \][/tex]
Step 2: Simplify the coefficient of the quadratic term.
Next, divide both sides of the equation by 4 to further isolate [tex]\((x + 2)^2\)[/tex].
[tex]\[ \frac{4(x + 2)^2}{4} = \frac{16}{4} \][/tex]
[tex]\[ (x + 2)^2 = 4 \][/tex]
Step 3: Solve for [tex]\(x + 2\)[/tex].
Take the square root of both sides of the equation to eliminate the square. Remember to consider both the positive and negative square roots.
[tex]\[ x + 2 = \pm\sqrt{4} \][/tex]
[tex]\[ x + 2 = \pm2 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
Lastly, solve for [tex]\(x\)[/tex] by subtracting 2 from both sides in each case.
1. For [tex]\(x + 2 = 2\)[/tex]:
[tex]\[ x + 2 = 2 \][/tex]
[tex]\[ x = 2 - 2 \][/tex]
[tex]\[ x = 0 \][/tex]
2. For [tex]\(x + 2 = -2\)[/tex]:
[tex]\[ x + 2 = -2 \][/tex]
[tex]\[ x = -2 - 2 \][/tex]
[tex]\[ x = -4 \][/tex]
Summary:
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(4(x + 2)^2 + 13 = 29\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = -4 \][/tex]
So, the solutions to the equation are:
[tex]\[ \boxed{0 \text{ and } -4} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.