Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve the given quadratic equation step by step:
The original equation is:
[tex]\[ 4(x + 2)^2 + 13 = 29 \][/tex]
Step 1: Simplify the equation by isolating the quadratic term.
First, subtract 13 from both sides of the equation to remove the constant term on the left-hand side.
[tex]\[ 4(x + 2)^2 + 13 - 13 = 29 - 13 \][/tex]
[tex]\[ 4(x + 2)^2 = 16 \][/tex]
Step 2: Simplify the coefficient of the quadratic term.
Next, divide both sides of the equation by 4 to further isolate [tex]\((x + 2)^2\)[/tex].
[tex]\[ \frac{4(x + 2)^2}{4} = \frac{16}{4} \][/tex]
[tex]\[ (x + 2)^2 = 4 \][/tex]
Step 3: Solve for [tex]\(x + 2\)[/tex].
Take the square root of both sides of the equation to eliminate the square. Remember to consider both the positive and negative square roots.
[tex]\[ x + 2 = \pm\sqrt{4} \][/tex]
[tex]\[ x + 2 = \pm2 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
Lastly, solve for [tex]\(x\)[/tex] by subtracting 2 from both sides in each case.
1. For [tex]\(x + 2 = 2\)[/tex]:
[tex]\[ x + 2 = 2 \][/tex]
[tex]\[ x = 2 - 2 \][/tex]
[tex]\[ x = 0 \][/tex]
2. For [tex]\(x + 2 = -2\)[/tex]:
[tex]\[ x + 2 = -2 \][/tex]
[tex]\[ x = -2 - 2 \][/tex]
[tex]\[ x = -4 \][/tex]
Summary:
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(4(x + 2)^2 + 13 = 29\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = -4 \][/tex]
So, the solutions to the equation are:
[tex]\[ \boxed{0 \text{ and } -4} \][/tex]
The original equation is:
[tex]\[ 4(x + 2)^2 + 13 = 29 \][/tex]
Step 1: Simplify the equation by isolating the quadratic term.
First, subtract 13 from both sides of the equation to remove the constant term on the left-hand side.
[tex]\[ 4(x + 2)^2 + 13 - 13 = 29 - 13 \][/tex]
[tex]\[ 4(x + 2)^2 = 16 \][/tex]
Step 2: Simplify the coefficient of the quadratic term.
Next, divide both sides of the equation by 4 to further isolate [tex]\((x + 2)^2\)[/tex].
[tex]\[ \frac{4(x + 2)^2}{4} = \frac{16}{4} \][/tex]
[tex]\[ (x + 2)^2 = 4 \][/tex]
Step 3: Solve for [tex]\(x + 2\)[/tex].
Take the square root of both sides of the equation to eliminate the square. Remember to consider both the positive and negative square roots.
[tex]\[ x + 2 = \pm\sqrt{4} \][/tex]
[tex]\[ x + 2 = \pm2 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex].
Lastly, solve for [tex]\(x\)[/tex] by subtracting 2 from both sides in each case.
1. For [tex]\(x + 2 = 2\)[/tex]:
[tex]\[ x + 2 = 2 \][/tex]
[tex]\[ x = 2 - 2 \][/tex]
[tex]\[ x = 0 \][/tex]
2. For [tex]\(x + 2 = -2\)[/tex]:
[tex]\[ x + 2 = -2 \][/tex]
[tex]\[ x = -2 - 2 \][/tex]
[tex]\[ x = -4 \][/tex]
Summary:
The values of [tex]\(x\)[/tex] that satisfy the equation [tex]\(4(x + 2)^2 + 13 = 29\)[/tex] are:
[tex]\[ x = 0 \quad \text{and} \quad x = -4 \][/tex]
So, the solutions to the equation are:
[tex]\[ \boxed{0 \text{ and } -4} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.