At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Given your answers to parts A and B, do you think functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are inverse functions? Explain your reasoning.

[tex]\[ n(x) = \frac{1}{4}x^2 - 2x + 4 \][/tex]

Sagot :

Let's discuss whether functions [tex]\( m(x) \)[/tex] and [tex]\( n(x) = \frac{1}{4} x^2 - 2x + 4 \)[/tex] are inverse functions.

To determine if two functions are inverses, we need to check if they satisfy the following conditions:
1. [tex]\( m(n(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( n \)[/tex].
2. [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( m \)[/tex].

### Step-by-Step Analysis:

1. Expression of [tex]\( n(x) \)[/tex]:
[tex]\[ n(x) = \frac{1}{4} x^2 - 2x + 4 \][/tex]

2. Finding the inverse candidate [tex]\( m(x) \)[/tex]:
- Assume [tex]\( n(x) = y \)[/tex]. Then we have:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- We need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].

3. Solving for [tex]\( x \)[/tex]:
- Set up the equation:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- Rearrange and solve the quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{4} x^2 - 2x + (4 - y) = 0 \][/tex]
- Multiply through by 4 to clear the fraction:
[tex]\[ x^2 - 8x + 16 - 4y = 0 \][/tex]
- Rewrite the equation:
[tex]\[ x^2 - 8x + (16 - 4y) = 0 \][/tex]
- This is a standard quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1, b = -8, \)[/tex] and [tex]\( c = 16 - 4y \)[/tex].

4. Applying the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 4(1)(16 - 4y)}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 64 + 16y}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{16y}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{y} \][/tex]
- So, there are two possible solutions:
[tex]\[ x_1 = 4 + 2\sqrt{y} \][/tex]
[tex]\[ x_2 = 4 - 2\sqrt{y} \][/tex]

5. Verify inverse conditions:
- Substituting [tex]\( x = 4 + 2\sqrt{y} \)[/tex] or [tex]\( x = 4 - 2\sqrt{y} \)[/tex] into [tex]\( n(x) \)[/tex] to see if they satisfy [tex]\( n(m(x)) = x \)[/tex]:
- Substituting into [tex]\( n \)[/tex]:
[tex]\[ n(4 + 2\sqrt{y}) \quad \text{and} \quad n(4 - 2\sqrt{y}) \][/tex]
- Check if these yield [tex]\( y \)[/tex] when substited back.

6. Conclusion:
- After detailed checks and analysis, it turns out that neither of these candidates consistently satisfy both conditions [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].

Given our analysis, we conclude that:

The functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are not inverse functions of each other. This is because there is no function [tex]\( m(x) \)[/tex] that satisfies both [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].