Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's discuss whether functions [tex]\( m(x) \)[/tex] and [tex]\( n(x) = \frac{1}{4} x^2 - 2x + 4 \)[/tex] are inverse functions.
To determine if two functions are inverses, we need to check if they satisfy the following conditions:
1. [tex]\( m(n(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( n \)[/tex].
2. [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( m \)[/tex].
### Step-by-Step Analysis:
1. Expression of [tex]\( n(x) \)[/tex]:
[tex]\[ n(x) = \frac{1}{4} x^2 - 2x + 4 \][/tex]
2. Finding the inverse candidate [tex]\( m(x) \)[/tex]:
- Assume [tex]\( n(x) = y \)[/tex]. Then we have:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- We need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- Set up the equation:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- Rearrange and solve the quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{4} x^2 - 2x + (4 - y) = 0 \][/tex]
- Multiply through by 4 to clear the fraction:
[tex]\[ x^2 - 8x + 16 - 4y = 0 \][/tex]
- Rewrite the equation:
[tex]\[ x^2 - 8x + (16 - 4y) = 0 \][/tex]
- This is a standard quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1, b = -8, \)[/tex] and [tex]\( c = 16 - 4y \)[/tex].
4. Applying the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 4(1)(16 - 4y)}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 64 + 16y}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{16y}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{y} \][/tex]
- So, there are two possible solutions:
[tex]\[ x_1 = 4 + 2\sqrt{y} \][/tex]
[tex]\[ x_2 = 4 - 2\sqrt{y} \][/tex]
5. Verify inverse conditions:
- Substituting [tex]\( x = 4 + 2\sqrt{y} \)[/tex] or [tex]\( x = 4 - 2\sqrt{y} \)[/tex] into [tex]\( n(x) \)[/tex] to see if they satisfy [tex]\( n(m(x)) = x \)[/tex]:
- Substituting into [tex]\( n \)[/tex]:
[tex]\[ n(4 + 2\sqrt{y}) \quad \text{and} \quad n(4 - 2\sqrt{y}) \][/tex]
- Check if these yield [tex]\( y \)[/tex] when substited back.
6. Conclusion:
- After detailed checks and analysis, it turns out that neither of these candidates consistently satisfy both conditions [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
Given our analysis, we conclude that:
The functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are not inverse functions of each other. This is because there is no function [tex]\( m(x) \)[/tex] that satisfies both [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
To determine if two functions are inverses, we need to check if they satisfy the following conditions:
1. [tex]\( m(n(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( n \)[/tex].
2. [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex] in the domain of [tex]\( m \)[/tex].
### Step-by-Step Analysis:
1. Expression of [tex]\( n(x) \)[/tex]:
[tex]\[ n(x) = \frac{1}{4} x^2 - 2x + 4 \][/tex]
2. Finding the inverse candidate [tex]\( m(x) \)[/tex]:
- Assume [tex]\( n(x) = y \)[/tex]. Then we have:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- We need to solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex].
3. Solving for [tex]\( x \)[/tex]:
- Set up the equation:
[tex]\[ y = \frac{1}{4} x^2 - 2x + 4 \][/tex]
- Rearrange and solve the quadratic equation for [tex]\( x \)[/tex]:
[tex]\[ \frac{1}{4} x^2 - 2x + (4 - y) = 0 \][/tex]
- Multiply through by 4 to clear the fraction:
[tex]\[ x^2 - 8x + 16 - 4y = 0 \][/tex]
- Rewrite the equation:
[tex]\[ x^2 - 8x + (16 - 4y) = 0 \][/tex]
- This is a standard quadratic equation in the form [tex]\( ax^2 + bx + c = 0 \)[/tex] where [tex]\( a = 1, b = -8, \)[/tex] and [tex]\( c = 16 - 4y \)[/tex].
4. Applying the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 4(1)(16 - 4y)}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{64 - 64 + 16y}}{2} \][/tex]
[tex]\[ x = \frac{8 \pm \sqrt{16y}}{2} \][/tex]
[tex]\[ x = 4 \pm 2\sqrt{y} \][/tex]
- So, there are two possible solutions:
[tex]\[ x_1 = 4 + 2\sqrt{y} \][/tex]
[tex]\[ x_2 = 4 - 2\sqrt{y} \][/tex]
5. Verify inverse conditions:
- Substituting [tex]\( x = 4 + 2\sqrt{y} \)[/tex] or [tex]\( x = 4 - 2\sqrt{y} \)[/tex] into [tex]\( n(x) \)[/tex] to see if they satisfy [tex]\( n(m(x)) = x \)[/tex]:
- Substituting into [tex]\( n \)[/tex]:
[tex]\[ n(4 + 2\sqrt{y}) \quad \text{and} \quad n(4 - 2\sqrt{y}) \][/tex]
- Check if these yield [tex]\( y \)[/tex] when substited back.
6. Conclusion:
- After detailed checks and analysis, it turns out that neither of these candidates consistently satisfy both conditions [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
Given our analysis, we conclude that:
The functions [tex]\( m \)[/tex] and [tex]\( n \)[/tex] are not inverse functions of each other. This is because there is no function [tex]\( m(x) \)[/tex] that satisfies both [tex]\( m(n(x)) = x \)[/tex] and [tex]\( n(m(x)) = x \)[/tex] for all [tex]\( x \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.