Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure, let's solve this problem step-by-step:
1. Sketch the graph of [tex]\( y = x^2 - 3x - 10 \)[/tex]:
- The equation [tex]\( y = x^2 - 3x - 10 \)[/tex] is a quadratic function, and its graph is a parabola opening upwards because the coefficient of [tex]\( x^2 \)[/tex] is positive.
- To sketch the graph, we first find the roots of the quadratic equation, i.e., the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex].
2. Find the roots of the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex]:
- Solving [tex]\( x^2 - 3x - 10 = 0 \)[/tex], we find the roots to be:
[tex]\[ x_1 = -2 \quad \text{and} \quad x_2 = 5 \][/tex]
These roots indicate the points where the parabola intersects the [tex]\( x \)[/tex]-axis.
3. Sketch the graph:
- The parabola passes through the points [tex]\( (-2, 0) \)[/tex] and [tex]\( (5, 0) \)[/tex].
- The vertex of the parabola can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = -3 \)[/tex]:
[tex]\[ x = \frac{3}{2} = 1.5 \][/tex]
Plug this value back into the equation to get the [tex]\( y \)[/tex]-coordinate of the vertex:
[tex]\[ y = (1.5)^2 - 3 \cdot 1.5 - 10 = -\frac{49}{4} \][/tex]
- So, the vertex of the parabola is [tex]\( \left(1.5, -\frac{49}{4}\right) \)[/tex].
- Using these points, you can sketch the parabola which opens upwards, with intercepts at [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex].
4. Identify the interval where [tex]\( x^2 - 3x - 10 < 0 \)[/tex]:
- The expression [tex]\( x^2 - 3x - 10 < 0 \)[/tex] holds true between the roots [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex], because this is the interval where the parabola is below the [tex]\( x \)[/tex]-axis.
5. Determine the integer values within this interval:
- The integer values of [tex]\( x \)[/tex] that lie strictly between [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values that satisfy [tex]\( x^2 - 3x - 10 < 0 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
1. Sketch the graph of [tex]\( y = x^2 - 3x - 10 \)[/tex]:
- The equation [tex]\( y = x^2 - 3x - 10 \)[/tex] is a quadratic function, and its graph is a parabola opening upwards because the coefficient of [tex]\( x^2 \)[/tex] is positive.
- To sketch the graph, we first find the roots of the quadratic equation, i.e., the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex].
2. Find the roots of the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex]:
- Solving [tex]\( x^2 - 3x - 10 = 0 \)[/tex], we find the roots to be:
[tex]\[ x_1 = -2 \quad \text{and} \quad x_2 = 5 \][/tex]
These roots indicate the points where the parabola intersects the [tex]\( x \)[/tex]-axis.
3. Sketch the graph:
- The parabola passes through the points [tex]\( (-2, 0) \)[/tex] and [tex]\( (5, 0) \)[/tex].
- The vertex of the parabola can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = -3 \)[/tex]:
[tex]\[ x = \frac{3}{2} = 1.5 \][/tex]
Plug this value back into the equation to get the [tex]\( y \)[/tex]-coordinate of the vertex:
[tex]\[ y = (1.5)^2 - 3 \cdot 1.5 - 10 = -\frac{49}{4} \][/tex]
- So, the vertex of the parabola is [tex]\( \left(1.5, -\frac{49}{4}\right) \)[/tex].
- Using these points, you can sketch the parabola which opens upwards, with intercepts at [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex].
4. Identify the interval where [tex]\( x^2 - 3x - 10 < 0 \)[/tex]:
- The expression [tex]\( x^2 - 3x - 10 < 0 \)[/tex] holds true between the roots [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex], because this is the interval where the parabola is below the [tex]\( x \)[/tex]-axis.
5. Determine the integer values within this interval:
- The integer values of [tex]\( x \)[/tex] that lie strictly between [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values that satisfy [tex]\( x^2 - 3x - 10 < 0 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.