Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve this problem step-by-step:
1. Sketch the graph of [tex]\( y = x^2 - 3x - 10 \)[/tex]:
- The equation [tex]\( y = x^2 - 3x - 10 \)[/tex] is a quadratic function, and its graph is a parabola opening upwards because the coefficient of [tex]\( x^2 \)[/tex] is positive.
- To sketch the graph, we first find the roots of the quadratic equation, i.e., the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex].
2. Find the roots of the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex]:
- Solving [tex]\( x^2 - 3x - 10 = 0 \)[/tex], we find the roots to be:
[tex]\[ x_1 = -2 \quad \text{and} \quad x_2 = 5 \][/tex]
These roots indicate the points where the parabola intersects the [tex]\( x \)[/tex]-axis.
3. Sketch the graph:
- The parabola passes through the points [tex]\( (-2, 0) \)[/tex] and [tex]\( (5, 0) \)[/tex].
- The vertex of the parabola can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = -3 \)[/tex]:
[tex]\[ x = \frac{3}{2} = 1.5 \][/tex]
Plug this value back into the equation to get the [tex]\( y \)[/tex]-coordinate of the vertex:
[tex]\[ y = (1.5)^2 - 3 \cdot 1.5 - 10 = -\frac{49}{4} \][/tex]
- So, the vertex of the parabola is [tex]\( \left(1.5, -\frac{49}{4}\right) \)[/tex].
- Using these points, you can sketch the parabola which opens upwards, with intercepts at [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex].
4. Identify the interval where [tex]\( x^2 - 3x - 10 < 0 \)[/tex]:
- The expression [tex]\( x^2 - 3x - 10 < 0 \)[/tex] holds true between the roots [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex], because this is the interval where the parabola is below the [tex]\( x \)[/tex]-axis.
5. Determine the integer values within this interval:
- The integer values of [tex]\( x \)[/tex] that lie strictly between [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values that satisfy [tex]\( x^2 - 3x - 10 < 0 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
1. Sketch the graph of [tex]\( y = x^2 - 3x - 10 \)[/tex]:
- The equation [tex]\( y = x^2 - 3x - 10 \)[/tex] is a quadratic function, and its graph is a parabola opening upwards because the coefficient of [tex]\( x^2 \)[/tex] is positive.
- To sketch the graph, we first find the roots of the quadratic equation, i.e., the values of [tex]\( x \)[/tex] for which [tex]\( y = 0 \)[/tex].
2. Find the roots of the equation [tex]\( x^2 - 3x - 10 = 0 \)[/tex]:
- Solving [tex]\( x^2 - 3x - 10 = 0 \)[/tex], we find the roots to be:
[tex]\[ x_1 = -2 \quad \text{and} \quad x_2 = 5 \][/tex]
These roots indicate the points where the parabola intersects the [tex]\( x \)[/tex]-axis.
3. Sketch the graph:
- The parabola passes through the points [tex]\( (-2, 0) \)[/tex] and [tex]\( (5, 0) \)[/tex].
- The vertex of the parabola can be found using the formula [tex]\( x = -\frac{b}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex] and [tex]\( b = -3 \)[/tex]:
[tex]\[ x = \frac{3}{2} = 1.5 \][/tex]
Plug this value back into the equation to get the [tex]\( y \)[/tex]-coordinate of the vertex:
[tex]\[ y = (1.5)^2 - 3 \cdot 1.5 - 10 = -\frac{49}{4} \][/tex]
- So, the vertex of the parabola is [tex]\( \left(1.5, -\frac{49}{4}\right) \)[/tex].
- Using these points, you can sketch the parabola which opens upwards, with intercepts at [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex].
4. Identify the interval where [tex]\( x^2 - 3x - 10 < 0 \)[/tex]:
- The expression [tex]\( x^2 - 3x - 10 < 0 \)[/tex] holds true between the roots [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex], because this is the interval where the parabola is below the [tex]\( x \)[/tex]-axis.
5. Determine the integer values within this interval:
- The integer values of [tex]\( x \)[/tex] that lie strictly between [tex]\( -2 \)[/tex] and [tex]\( 5 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
Therefore, the integer values that satisfy [tex]\( x^2 - 3x - 10 < 0 \)[/tex] are:
[tex]\[ -1, 0, 1, 2, 3, 4 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.