Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's solve the equation step by step.
The equation we need to solve is:
[tex]\[ -3(x-2) + 4x = 2x - 4 \][/tex]
### Step-by-Step Solution
Step 1: Distribute
First, distribute the [tex]\(-3\)[/tex] across the terms in the parentheses on the left-hand side of the equation.
[tex]\[ -3(x - 2) + 4x = -3x + 6 + 4x = 2x - 4 \][/tex]
Step 2: Combine like terms
Next, combine like terms on the left-hand side of the equation.
[tex]\[ (-3x + 4x) + 6 = 2x - 4 \][/tex]
[tex]\[ x + 6 = 2x - 4 \][/tex]
Step 3: Isolate the variable [tex]\(x\)[/tex]
Move all [tex]\(x\)[/tex] terms to one side and constant terms to the other side. To do this, subtract [tex]\(2x\)[/tex] from both sides.
[tex]\[ x - 2x + 6 = 2x - 2x - 4 \][/tex]
[tex]\[ -x + 6 = -4 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex]
Next, move the constant term from the left side to the right side of the equation by subtracting 6 from both sides.
[tex]\[ -x + 6 - 6 = -4 - 6 \][/tex]
[tex]\[ -x = -10 \][/tex]
Multiply both sides by -1 to solve for [tex]\(x\)[/tex].
[tex]\[ x = 10 \][/tex]
### Check Your Solution
To check if our solution is correct, substitute [tex]\(x = 10\)[/tex] back into the original equation and see if both sides are equal.
Original equation:
[tex]\[ -3(x-2) + 4x = 2x - 4 \][/tex]
Substitute [tex]\(x = 10\)[/tex]:
[tex]\[ -3(10-2) + 4 \cdot 10 = 2 \cdot 10 - 4 \][/tex]
[tex]\[ -3(8) + 40 = 20 - 4 \][/tex]
[tex]\[ -24 + 40 = 16 \][/tex]
[tex]\[ 16 = 16 \][/tex]
Since both sides of the equation are equal when [tex]\(x = 10\)[/tex], our solution is confirmed to be correct.
### Conclusion
\#1: We distributed the terms, combined like terms, moved all [tex]\(x\)[/tex] terms to one side and constant terms to the other, and finally solved for [tex]\(x\)[/tex].
\#2: The value of [tex]\(x\)[/tex] that makes the equation true is:
[tex]\[ x = 10 \][/tex]
\#3: Substituting [tex]\(x = 10\)[/tex] back into the original equation confirms that both sides are equal, thereby verifying our solution.
The equation we need to solve is:
[tex]\[ -3(x-2) + 4x = 2x - 4 \][/tex]
### Step-by-Step Solution
Step 1: Distribute
First, distribute the [tex]\(-3\)[/tex] across the terms in the parentheses on the left-hand side of the equation.
[tex]\[ -3(x - 2) + 4x = -3x + 6 + 4x = 2x - 4 \][/tex]
Step 2: Combine like terms
Next, combine like terms on the left-hand side of the equation.
[tex]\[ (-3x + 4x) + 6 = 2x - 4 \][/tex]
[tex]\[ x + 6 = 2x - 4 \][/tex]
Step 3: Isolate the variable [tex]\(x\)[/tex]
Move all [tex]\(x\)[/tex] terms to one side and constant terms to the other side. To do this, subtract [tex]\(2x\)[/tex] from both sides.
[tex]\[ x - 2x + 6 = 2x - 2x - 4 \][/tex]
[tex]\[ -x + 6 = -4 \][/tex]
Step 4: Solve for [tex]\(x\)[/tex]
Next, move the constant term from the left side to the right side of the equation by subtracting 6 from both sides.
[tex]\[ -x + 6 - 6 = -4 - 6 \][/tex]
[tex]\[ -x = -10 \][/tex]
Multiply both sides by -1 to solve for [tex]\(x\)[/tex].
[tex]\[ x = 10 \][/tex]
### Check Your Solution
To check if our solution is correct, substitute [tex]\(x = 10\)[/tex] back into the original equation and see if both sides are equal.
Original equation:
[tex]\[ -3(x-2) + 4x = 2x - 4 \][/tex]
Substitute [tex]\(x = 10\)[/tex]:
[tex]\[ -3(10-2) + 4 \cdot 10 = 2 \cdot 10 - 4 \][/tex]
[tex]\[ -3(8) + 40 = 20 - 4 \][/tex]
[tex]\[ -24 + 40 = 16 \][/tex]
[tex]\[ 16 = 16 \][/tex]
Since both sides of the equation are equal when [tex]\(x = 10\)[/tex], our solution is confirmed to be correct.
### Conclusion
\#1: We distributed the terms, combined like terms, moved all [tex]\(x\)[/tex] terms to one side and constant terms to the other, and finally solved for [tex]\(x\)[/tex].
\#2: The value of [tex]\(x\)[/tex] that makes the equation true is:
[tex]\[ x = 10 \][/tex]
\#3: Substituting [tex]\(x = 10\)[/tex] back into the original equation confirms that both sides are equal, thereby verifying our solution.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.